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Abstract—In order to guide the design of a new multi-robot
system, we seek to evaluate two different designs of audio
direction sensor. We have implemented a simple but useful audio
propagation simulator as an extension to the Stage multi-robot
simulator. We use the simulator to evaluate the use of audio
signals to improve the performance of a team of robots at a
prototypical search task. The results indicate that, for this task, (i)
audio can significantly improve team performance, and (ii) binary
discrimination of the direction of a sound source (left/right)
performs no worse than high-resolution direction information.
This result suggests that a simple two-microphone audio system
will be useful for our real robots, without advanced signal
processing to find sound direction.

I. INTRODUCTION

Numerous types of sensors and emitters have been used in
robots. Audio (defined as sound signals at human-audible fre-
quencies) is occasionally used, but is by no means as popular
as the cameras and range finders fitted to most mobile robots.
In contrast, we observe that audio signaling is extensively
exploited by animals. The most obvious example is human
speech communication, but many non-human mammals, birds
and insects also use sound in spectacular ways. Of particular
interest to the multi-robot systems builder is the use of audio
signals to organize the behavior of multi-agent systems, for
example by sounding alarm calls or establishing territories.

In robots, audio is used both for passively sensing the
environment and as a means of communication. Buzzers
and beepers are common debugging tools, allowing humans
to perceive aspects of a robot’s internal state over several
meters and without line-of-sight. Some systems, including
research robots and toys, have speech synthesizers to make
human-understandable sounds. Conversely, speech recognition
systems have been employed for robot control by humans.

But the use of audio as a robot-to-robot communication
medium is not well studied. The most common means of
communication between robots is through wireless data links
which have the advantages of being robust, fast and relatively
long range. Line-of-sight communication systems are also
used, usually implemented using infrared signaling and the
IRDA protocol. However, there are some interesting properties
of sound which may make it attractive as an alternative or
complementary medium for robot-robot communication. First,
unlike light- or infrared-based systems, audio signals do not
need line of sight. Audio is propagated around obstacles by
diffraction and by reflection from surfaces. However, reflected

audio signals may be greatly attenuated as their energy is
partially absorbed by the reflecting material. Audio signals
are typically affected by robot-scale obstacles much more
strongly than are radio signals. The strong interaction between
audio and the robot-traversable environment means that useful
environmental information can be obtained from a received
audio signal in addition to information encoded into the signal
by its producer.

This insight can be seen to motivate previous work using
audio in robots. For example, robots can follow an intensity
gradient to find a sound source. In many environments, such
as an office building, the intensity gradient closely follows the
traversable space for a robot. Further, the steepest intensity
gradient generally takes the shortest path from source to the
robot. Huang [1] showed sound-based servoing for mobile
robots to localize a sound source. Bstergaard [2] showed that
even with a single microphone, an audio alarm signal has a
detectable gradient which can be used to track down the path
toward the sound source and they used the audio signals to
help solve a multiple-robot-multiple-task allocation problem.

Animals, including humans, have the ability to identify
the 3D direction of sound source (with some limitations). A
mechanism that performs this task with amazing precision
has been extensively studied in owls [3]. Several authors,
e.g. [4], have demonstrated artificial sensor systems that can
accurately localize sound sources. Our interest is in designing
systems of many small, low-cost robots, each with relatively
little computational power and memory. Microphones are
attractively low-cost, and we aim to leverage the power of
these sensors as demonstrated by their use in animals. We
desire to keep our robots as simple as possible, to allow us to
examine minimal solutions to robotics problems.

The question that motivated the work in this paper is
simple: do our robots need accurate sound localization to get
significant benefits from audio signaling?

II. ToOLS AND TASK DEFINITION

In addition to microphones, our robots are equipped with
some other low-cost sensors: a single loudspeaker, infrared
rangers, and a low-resolution CCD camera with the ability to
detect two different color markers. The world is large com-
pared to the size of the robots, and accurate global localization
is not feasible. To guide the design of the real robots we
model these sensors in the Player/Stage [5] robot interface and



simulation system. At the time of writing the standard Stage
distribution does not simulate audio communication between
robots, so we extend Stage with an audio propagation model.
The model makes the simplifying assumption that sounds
traverse the shortest path from speaker to microphone and the
received signal intensity is a function only of the length of the
traversed path.

Audio may be useful in many practical robot applications.
As a motivating example, we examine a general resource-
transportation task which requires robots to explore the world
to find the (initially unknown) location of a source and sink of
resources, and then to move between the source (loading) and
the sink (unloading) locations. The metric of success is the
time taken for the entire team to complete a fixed number of
trips between the source and the sink. The importance of this
task is that it is functionally similar to various exploration and
transportation scenarios and it has been previously studied (e.g.
[6]). The robots are individually autonomous and do not have
a shared memory or map. The source and sink locations are
initially unknown and the robots must find them by exploring
the environment. It is straightforward to implement a robot
that can perform this task with these constraints.

The amount of work done - measured by the total number
of source-to-sink traverses per unit time - can be increased
by adding additional robots. If the robots act independently,
performance increases linearly with the number of robots
added until interference between robots becomes significant
[7]. If the robots are not independent, but instead actively
cooperate by sharing information, we can expect to improve
performance further. In these experiments we examine the
effects on overall system performance when robots generate
audio signals to announce the proximity of a target. On hearing
an audio signal, a robot can head in the direction from which
the signal was received, and thus reduce the time it takes
to find a target. We expect that the robots can reach more
targets if they signal to each other in this way, and indeed our
results show this effect. The more interesting experiment is to
severely restrict the robot’s ability to detect sound direction.
We examine the difference in performance between robots
that can determine the direction of a sound source with
perfect accuracy, and those that can tell only if the sound
was louder at the front or rear microphone: 1 bit of direction
information. The 1-bit system is significantly easier and less
computationally costly to implement, so it is useful to see
how it performs compared to an idealized perfectly accurate
direction sensor.

III. Aubpio MODEL

Audio propagation in an office-like environment is very
complex. Sound waves are partially reflected, partially ab-
sorbed and partially transmitted by every material with which
they interact. Different materials interact with the signal in
frequency- and amplitude-dependent ways. Physically accurate
modeling is very challenging. We take a pragmatic approach
similar to those used in computer games where the simulation

Fig. 1. The shortest-path audio model models the large difference in received
signal intensity in the scenarios depicted in (a) and (b). In this figure, solid
lines are walls, circles are the sender and receiver robots locations and dotted
lines are shortest audio paths.

Fig. 2. Prototype of Chatterbox, a small robot, running Linux and equipped
with different types of sensors and emitters.

needs to be realistic enough to be useful, while being compu-
tationally feasible to run at approximately real-time [8].

Our model models the sound propagation by the shortest-
path from speaker to microphone only. Reflections or multiple
paths are not modeled and audio is not transmitted through
solid walls. This simple model is sufficient to exhibit some of
the useful features of the real audio transmission, such as the
locality and directionality of sound and the existence of local
environmental gradients. For example the shortest-path audio
model models the large difference in received signal intensity
in the scenarios depicted in Fig. 1(a) and Fig. 1(b).

To compute the shortest-path from sound source to sound
sensor without passing through walls, a visibility graph is
generated [9] [10]:

For a map M in which obstacles are defined as a

set of polygonal obstacles S, the nodes of visibility

graph are the vertices of S, and there is an edge,

called a visibility edge, between vertices v and w if

these vertices are mutually visible.
To find the shortest-path between two points, these points are
added as new nodes to the visibility graph and the visibility
edges between these new nodes and the old nodes are added
respectively. The value of each edge is set to the Euclidean
distance between its two nodes. Then by running the Dijkstra
[11] algorithm from the source to the destination the shortest
distance and shortest-path between these two nodes is found.

IV. SYSTEM
A. Robot Platform Requirements

These experiments are run in simulation using Player/Stage,
in order to guide the design of a group of real robots. Our
Chatterbox project is building 40 small robots to study long-
duration autonomous robot systems. The robots run Player on



Fig. 3. An example of a bitmap and a set of refraction points. These three
robots are sending audio signals and the lines show the calculated shortest
audio paths.

Linux on Gumstix single-board computers. They will work in
large, office-like environments: too large for the robot to store
a complete world map. The simulations use only sensing and
actuation that will be available on the real robots.

Robot controllers are written as clients to the Player robot
server, which provides a device-independent abstraction layer
over robot hardware. Stage provides simulated robot hardware
to Player by modeling the robots’ movements and interactions
with obstacles, and generating appropriate sensor data.

B. Audio Model Implementation

The proposed audio simulator is a Player client, based on
Gerkey’s Playernav utility (included with the Player distribu-
tion). The audio client obtains map and robot position data
from Player, and acts as a communication proxy between
robots. Robots emit “sound” by making a request to the audio
client. Our audio model client calculates the shortest distance
between the transmitting robot and all receiving robots. The
intensity of the received signal is determined by the distance
traveled. If any of the robots receive a sound above a minimum
threshold, the audio client transfers the sound data including
received intensity and direction to the receiving robot.

Our audio propagation model requires that obstacles be
defined as a set of polygons but the Player map interface
provides obstacle maps in a bitmap format. In order to convert
the bitmap to a format that can be used to generate a visibility
graph quickly, a 3 x 3 mask is used to find obstacle corners. By
scanning this 3 x 3 mask some points are labeled as refraction
points, the points at which audio can change direction. Fig. 3
shows an example of a set of refraction points and the audio
path found by this method.

C. Exploration

Two arbitrary, distinct world locations are defined as the
source and the sink, respectively, of resources for our trans-
portation task. The locations are marked with optical fiducials
(hereafter markers), visible in the on-board camera only over
short distances with line-of-sight. Robots must find the source
and sink locations and travel between them as quickly as pos-
sible. Without global localization, the robots need to explore
the world to find the markers that indicate source and sink.
On reaching a marker, a robot stops there for a short, fixed
amount of time intended to model the robot doing some work
at that location, such as grasping an object. After this time
is up, the robot seeks the other location marker. This way of

implementing the system permits marker locations to change
arbitrarily over time.

There are many different approaches that can be taken for
exploration to find markers. One suitable method is frontier-
based searching proposed by Yamauchi [12], in which each
robot uses an occupancy grid with three states: empty, obsta-
cle, and unknown/unexplored for each cell to store the global
map. At the start, the entire world is unexplored, but as the
robot moves, the occupancy grid will be filled using the sensor
readings. Frontiers in this occupancy grid are defined as those
empty cells that have an unknown cell in their 8-connected
neighborhood. Each robot moves towards the nearest frontier
and gradually it explores all the traversable areas with a greedy
strategy to minimize the traveling cost. The exploration is
complete when there are no more accessible frontiers. The
frontier-based approach guaranties that the whole traversable
area of the map will be explored. We use an adaptation of this
approach described below.

D. Path Planning in a Local Map

Our constraints require that the robot has no a priori
global map, has no means to globally localize itself, and has
conventional odometry with unbounded error growth. We wish
to avoid the memory and computational cost of producing
a global map, yet still perform effective exploration. Our
approach is to maintain a short-range occupancy grid of robot’s
current neighborhood, centered at the robot. We call this
occupancy grid a local map. As the robot moves, the local
map is updated continuously from sensor data. Information
may “fall off” the edge of the local map as the robot moves,
and is lost. Figure 4(a) is an example of a local map built
by one robot over a period of time, in which white, black
and grey cells indicate empty, obstacle, and unknown areas
respectively.

To explore the world, we use frontier-based exploration,
where the state of all cells outside the map is assumed to be
unknown. This means that all empty cells on the map border
are frontiers. We modify the original frontier-based method so
that each cell value in the map expires after a fixed amount of
time and reverts to unknown. This is to cope with the dynamic
elements of the world such as other robots, which may look
like obstacles to the sensors.

For obstacle avoidance and planning we combine the local
map with a potential field path-planning method due to Batavia
[13]. Using the collected environment information stored in the
local map, first a traversibility map is built. The traversibility
map is the result of applying a distance transform to the
obstacles in the local map. The distance transform operator
numbers each cell with its distance from the nearest obstacle,
so a non-empty cell is numbered as zero; all its empty
neighbors will be one and so on. In our implementation, a city-
block (“Manhattan”) distance metric is used, thus assuming
travel is only possible parallel to the X and Y axes. Figure 4(a)
shows an example local occupancy-grid map and Figure 4(b)
shows the corresponding traversibility map. Occupancy grid
cells marked “unknown” are handled as empty cells. An
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(a) Local map: an occupancy grid built by a robot over a period of time. In this image, white shows empty area, black shows known obstacles

(enlarged by the robot size), and gray shows unknown area. (b) Traversibility map: the darker the cell color, the harder going to that cell is (c) Potential field

map: robot can follow the gradient to reach the target.

exponential function on the value of a cell in traversibility
map shows the cost of moving to that cell. This forces the
robot to maintain a suitable distance from obstacles while not
totally blocking narrow corridors and doorways.

A wave-front transform is used to generate a robot-guiding
potential field from the local map and traversibility map. The
field is represented by a bitmap in which the value of each cell
indicates the cost of moving from the goal to that point. It is
implemented by a flood fill starting from the target cell, valued
1, and numbering all other cells with their minimum travel cost
from the target. The cost function is the city-block distance
plus the risk of getting near to an obstacle. This risk cost is
taken directly from the corresponding cell in the traversibility
map. Figure 4(c) shows an example potential field. By always
moving from a cell into the lowest-valued adjacent cell, the
robot takes the optimal path to the target. If implemented using
FIFO queues, both steps of this algorithm scale O(n), where
n is the number of cells in the map - a fixed value in our
method.

To select the goal point on the local map, we use a cost
function which selects a frontier cell. Cell selection can be
based on multiple weighted factors including distance to that
cell, a random weighting (to add stochasticity to help avoid
loops), or a bias in favor of the current direction of robot
(in order to prevent the robot from making cyclic decisions -
a problem introduced by using local instead of global map).
Another important factor can be the information received from
other sources and sensors such as audio communication with
other robots [14].

E. Use of the Audio

We aim to discover whether audio signaling can be used
to improve performance of a robot system searching for the
markers. To be feasible for real-world implementation in
the short-term, we allow only very simple audio messages,
representing single values from a pre-set range. This will be
something similar to robots using DTMF codes, as used by
a touch-tone telephone, to talk to each other. When a marker
is seen and while it remains in view, the robot generates a

DTMEF tone identifying the marker. By continuing to announce
the marker for a short period of time after the marker is no
longer in view, it allows other robots to continue to receive
location information, thereby increasing their chance of finding
the markers. In our experiments this time is set to 10 seconds.

In addition to receiving the marker number, other robots in
the audible range will know audio volume and the direction
from which the sound arrived. This is feasible in the real
world: Valin [4] showed how microphone arrays can be used
to detect the angle with high precision. However, a far more
simple configuration is to have only two microphones and the
direction can be simplified to two states: depending on the
microphone placement, this could be front or rear, left or right.

To use this information from the audio sensor, the messages
received are stored in a queue with a time label. Each cell can
now be scored based on the received messages and this score
is added to the distance cost for scoring frontiers. These are
the factors for scoring each cell based on one message:

« Difference of cell direction compared to message direc-

tion (-1.0 to 1.0)

o Message age (0.0 to 1.0)

¢ Message intensity (0.0 and 1.0)

In our implementation, for a cell ¢ = (cz,¢y), and
the set M of messages, where each message is m =
(Mdata, M, Micvel, Mage), the cost function is:

f(C, M) = |C‘+G7w H (6(mdir7Cdir)Q(mage)(I)(mlevel))
meM

In which, |c¢| = /c; + ¢, is the cell distance from robot.
G is a small Gaussian random with a mean of zero. w is
a fixed weight. For 0 < z < 27, O(z) = ”_ﬁi, which
is the direction difference factor. This is an approximation
for ©(x) = cos(x). Q(mage) is the message age factor and
Q(myeper) is the intensity factor. Messages are discarded from
the queue after three minutes.

F. Sensor Choices

The swarm is made up of small two-wheeled robots, 15cm
in diameter (a little larger than a CD) and the same height and
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15c¢m in diameter). The markers, shown as boxes, are resource locations.

a maximum speed of 30cm/second. The simulated sensors are
configured to match the real devices as closely as possible
given the limitations of Stage. For avoiding obstacles and to
build a map of robot surroundings 8 infrared sensors with a
range of 1.5m (similar to the real SHARP GP2D12 device)
are used.

To identify the markers showing the position of working
areas, a camera and a simple blob finder with a range of 5
meters is assumed. Any fiducial-type sensor with the ability
to guide the robot to a nearby line of sight object can be
substituted.

Two configurations of the simulated audio sensor were
tested: omni-directional, i.e. giving high-resolution informa-
tion about the direction to a sound source, and bi-directional,
giving only 1 bit of direction data. The maximum audio
receiving range was set to 15m.

V. EXPERIMENT

The environment map for this experiment is the “hospital
section” map distributed with Stage, which is derived from
a CAD drawing of a real hospital. It is a general office-like
environment with rooms and corridors with a size of 34 by
14 meters. The map is large compared to the robot’s size and
sensor ranges (it is 227 x 93 times our 15x 15cm robot size). A
starting configuration is a list of starting position and angle for
robots and the position of the two markers (working areas).
A valid starting configuration is a starting configuration in
which no object is placed over an obstacle and all markers
are reachable. Ten different valid starting configurations are
randomly generated. To illustrate, configuration 1 is shown in
Figure 5.

A job is defined as finding one marker and spending 30
seconds there working (loading/unloading) and then changing
the goal to another marker. In each experiment the time for
completing a total of 20 jobs by 5 robots is measured. So it is
possible that different robots will complete different number of

Initial configuration 1 in a partial hospital floor plan (“hospital_section” in Stage). The map is 34x14 square meters. The robots (small circles are

jobs. This means that if one robot becomes stuck somewhere,
the other robots can continue to work.

VI. RESULTS

We ran 20 experiments of 3 different methods over 10
different starting configurations, for a total of 600 simulation
trials. Figure 6(a) shows the mean and the 95% confidence
interval of time to finish each job in one of the initial
configurations (Configuration number 9). The chart shown
in Figure 6(b) shows the time to finish the total 20 jobs
for all initial configurations. It can be seen that the most
important factor in the total time to finish the job is the
initial configuration and especially the position of the two
working areas. In configuration 1, shown in Figure 5, the two
markers are far apart, and the job-completion times seen in
Figure 6(b) for configuration 1 are large. However, in many
configurations, differences in mean completion times between
the three sensing methods are visible.

To analyze these differences we ran r-tests between every
pair of methods on each map to determine which pairs have
significantly different means. We found that:

o For every map, there is a statistically significant dif-
ference between no audio and any method which uses
attracting audio.

e Only two of the configurations using omni-directional
sensors were statistically different from bi-directional
ones

o Of these two, the differences were inconsistent.

From these results we can conclude that

1) using attracting audio can affect the performance signif-

icantly, and

2) as there is no statistical significant difference between

an omni-directional and a bi-directional microphone, the
use of a simple bi-directional can be recommended.

It should be noted that the size of the performance gain
given by using audio is likely to be sensitive to the implemen-
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Fig. 6. The mean and 95% confidence interval time (in seconds) to (a) finish each job in one of the initial configurations (configuration number 9) (b) finish
all 20 jobs in all configurations. The configurations are reordered by the time of “no audio” method for the sake of clarity.

tation parameters and environment properties. It also seems
likely that the 1-bit audio direction sensor would not perform
so well in less constrained environments.

VII. CONCLUSION AND FUTURE WORK

We have shown that using audio communication can in-
crease the performance of a realistic group task significantly.
This can be done even by using simple robots, each equipped
with a speaker and two microphones as a bi-directional sensor,
i.e. using one bit of audio signal direction information. The
task and implementation presented here can be used as starting
point for research in this field and there are many different
aspects which could usefully be studied. There are several
implementation parameters which can be changed, potentially
affecting the overall performance of the system. Nonetheless,
we believe that these simulation results are a useful predictor
of the gross behavior of this system in the real world. Our
future experiments will test this hypothesis.

Due to its physical interaction with the robot’s environment,
audio promises to be a very interesting sensor modality.
We plan to explore using frequency information in ambient
and transmitted audio signals, for example to characterize
locations by their “sound”. As an example, our lab, offices
and hallway have very different ambient sound and sound-
reflection properties: each can be easily recognized by sound
alone. This could be useful for localization.

We also plan to explore the use of the audio in groups of
agents, based on models of signaling behavior in birds and
insects. Possible applications include resource management,
territory formation, and task allocation.

Another aspect of our work is to develop the robots,
simulation and measurement tools for testing the algorithms.
We also plan to further develop and test the audio propagation
model, and make it available to the Player/Stage community.
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