
AUDIO COMMUNICATION FOR

MULTI-ROBOT SYSTEMS

by

Pooya Karimian

B.Sc., Sharif University of Technology, 2003

a thesis submitted in partial fulfillment

of the requirements for the degree of

Master of Science

in the School

of

Computing Science

c© Pooya Karimian 2007

SIMON FRASER UNIVERSITY

2007

All rights reserved. This work may not be

reproduced in whole or in part, by photocopy

or other means, without the permission of the author.



APPROVAL

Name: Pooya Karimian

Degree: Master of Science

Title of thesis: Audio Communication for Multi-Robot Systems

Examining Committee: Dr. Anoop Sarkar, Professor

School of Computing Science

Chair

Dr. Richard Vaughan, Professor

School of Computing Science

Senior Supervisor

Dr. Greg Mori, Professor

School of Computing Science

Supervisor

Dr. Mohamed Hefeeda, Professor

School of Computing Science

Examiner

Date Approved:

ii



Abstract

Interaction through communication is an important aspect of multi-robot systems. Audio

communication, while common among animals and well studied in biology, is not well

explored as a multi-robot technology. In this thesis we study the use of audio messages

as a means of communication among mobile robots. We examine the properties of audio

compared to other communication media, and show how these can be exploited.

To guide the design of a multi-robot system, a simple audio propagation model integrated

into a robot simulator is developed. This simulator shows how acoustic communication

improves the team performance in a prototypical search task.

We also introduce a physical network layer that uses audio as the transmission medium

and implements a broadcast method related to the CSMA protocol. We then describe a

distributed mutual exclusion algorithm suitable for use over audio, and demonstrate it in

both simulation and real-world.

Keywords: Robotics, Autonomous Robots, Intelligent Control Systems, Distributed

Systems, Audio Communication.

iii



To my parents

iv



Acknowledgments

I would like to thank Dr. Richard Vaughan. He is a wonderful supervisor. He provided

encouragement, support, and lots of good ideas from the very first semester I was here at

the Simon Fraser University.

This work wouldn’t be possible without the facilities provided by the Autonomy Lab

and the help of my colleagues at the lab. I would like to thank Jens Wawerla for his help

especially in the Chatterbox project.

Thanks to all members of the thesis committee for their interest and time. Dr. Greg

Mori has been an invaluable source of knowledge both during his course and when I was his

research assistant.

Dr. Torsten Möller guided me to finish the course project discussed in Section 2.5 in a

short time and with good results. Dr. Tamara Smyth and Dr. Daniel Weiskopf provided me

with helpful comments on that project.

The Open-Source software was an essential part of my project. Thanks to the Player

and Stage projects and the open community behind the Gumstix boards. I am thankful to

Jesús Arias for releasing his RTTY software on which my Nava module is based.

Finally, I wish to thank my family: my parents for their support even from far away on

the other side of the world and my sister, Roya, for her encouragement.

v



Contents

Approval ii

Abstract iii

Dedication iv

Acknowledgments v

Contents vi

List of Tables ix

List of Figures x

List of Programs xiv

1 Introduction 1

1.1 Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Audio in Human and Animals . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Audio in Technology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.4 Communication in Robotics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.5 Why Audio? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.6 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.7 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Modeling Audio Signals 9

2.1 Audio Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

vi



2.2 Shortest Path Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Pros . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.2 Cons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3.1 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Stage model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.5 Complex Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3 Sounds Good: Evaluation of Audio Communication 28

3.1 Task Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.2 System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.3.1 Frontier Based Exploration . . . . . . . . . . . . . . . . . . . . . . . . 34

3.3.2 Local Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.3 Using Audio Information . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.3.4 Path Planning in a Local Map . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Going to the Real World 46

4.1 Sounds Good in the Real World . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Audio Communication in Robotics . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Concurrent Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3.1 Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.2 Local Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.3.3 Distributed Coordination . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Final Choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.5 Message Passing Communication . . . . . . . . . . . . . . . . . . . . . . . . . 49

5 Nava: Audio Communication Layer 50

5.1 RTTY Communication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1.1 Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.1.2 Demodulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

vii



5.2 Broadcast over Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.1 Network Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.2 Collisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.2.3 Unreliable Broadcast . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.3 Player Driver . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6 Mutual Exclusion for Robots 58

6.1 Mutual Exclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2 Mutual Exclusion for Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.1 Physical Object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.2.2 Lock Assignment Authority . . . . . . . . . . . . . . . . . . . . . . . . 59

6.2.3 Token Passing in a Ring . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.2.4 Logical Clocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Mutual Exclusion over Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

6.3.1 Our Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

6.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

7 Local Mutual Exclusion Demonstration 69

7.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

7.2 Application: Charging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

7.2.1 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.2.2 Real-World Demonstration . . . . . . . . . . . . . . . . . . . . . . . . 78

8 Conclusions and Future Work 84

8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.1 Hybrid Communication . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.2 Bio-inspired Communication . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.3 Modern Network Protocols on Audio . . . . . . . . . . . . . . . . . . . 86

8.2.4 Sound Signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.3 Final Word . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Bibliography 88

viii



List of Tables

3.1 Mean and standard deviation of time to finish an experiment using different

types of audio sensors and on different starting configurations. The numbers

are in seconds. Each mean and deviation is calculated using 20 different

experiments. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Two-tailed student T-test results. Each row shows the comparison of a

method pair on one configuration. Column “gain” is the performance gain

percentage of method 2 over method 1, and is calculated by dividing the

means minus one. Column “Different” shows whether according to the t-Test

the results were statistically different with a 95% confidence or not. . . . . . . 44

6.1 Actions and events for agents requesting the lock in the audio-based mutual

exclusion method in comparison to Ricart-Agrawala algorithm. . . . . . . . . 66

7.1 The request pair and the time lock is granted for the three robots of the

simulation trial depicted in Figure 7.5(b). . . . . . . . . . . . . . . . . . . . . 76

7.2 The request pair and the time lock is granted for the three robots of the

real-world trial depicted in Figure 7.10(b). . . . . . . . . . . . . . . . . . . . . 82

ix



List of Figures

1.1 System architecture of a multi-robot system running (a) in simulation with

robot controller programs using the simulator to model the virtual robots and

audio communication between them (b) in real-world with robots equipped

with a physical audio message transmission modem. . . . . . . . . . . . . . . 6

2.1 Audio propagation in an environment can be complex and at the same time

exhibit regular properties that can be used by robotic systems. . . . . . . . . 10

2.2 The simple model simulates audio propagation as the shortest path between

the sound source and the destination. This is the path the direct and the

most powerful sound will take. . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 The shortest-path audio model models the large difference in the received

signal intensity in the scenarios depicted in (a) and (b). In this figure, solid

lines are walls, circles are the sender and receiver robots locations and dotted

lines are shortest audio paths. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 These are the steps to build a visibility graph (a) of a map and its set of

polygonal obstacles. (b) The obstacle vertices form the graph nodes. (c) &

(d) An edge is added for every pair vertices that are mutually visible without

hitting an obstacle. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.5 A sample set of masks in which their center point cannot be a diffraction

point and their corresponding integer representation . . . . . . . . . . . . . . 15

2.6 The steps to find the shortest path between two nodes in a bitmap using

diffraction points and visibility graph . . . . . . . . . . . . . . . . . . . . . . . 16

x



2.7 An example of a bitmap and a set of diffraction points (small green dots near

the walls). These three robots (hexagons) are sending audio signals and the

lines show the calculated shortest audio paths. Note the difference in the

number of diffraction points of different map types in (a) and (b). . . . . . . 17

2.8 The audio propagation model calculates the shortest-path distance between

the virtual robots in the simulated world and dispatch messages between

robot controller programs that are connected as clients to Player. The audio

model can be implemented in two ways: (a) The initial version connected a

client to Player. (b) The new model integrated into Stage. . . . . . . . . . . . 21

2.9 Ray tracing in Stage using a quad-tree matrix for speed-up. . . . . . . . . . . 22

2.10 Player/Stage modeling the audio message paths between four robots. . . . . . 22

2.11 Diffraction of audio waves around obstacle edges matches the shortest-path

simplification of audio model. (a) Waves passing through a narrow slit. (b)

Diffraction behind a wall. (c) Diffraction around an obstacle. . . . . . . . . . 24

2.12 Two wooden blocks placed in a circular ripple tank with a slit between them,

creating circular waves. Beneath the ripple tank was a sheet of white paper,

where the wave patterns appeared due to a light source above the ripple tank.

c©Armed Blowfish. Used by permission under the BSD license. . . . . . . . . 25

2.13 Huygens-Fresnel principle analyzes how waves are diffracted using a sum

of small secondary waves along the advancing wave front. Compare this

Huygens-Fresnel analyzed model with a real photo of wave diffraction shown

in Figure 2.12. c©Arne Nordmann. Used by permission. . . . . . . . . . . . . 26

2.14 A complex audio propagation model, modeling the direct sound, reflection

and diffraction of audio waves. Such a model can provide high accuracy but

will be computationally expensive. . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1 A schematic of the examined resource transportation task for a single robot.

The robot starts by searching for the source, loading a virtual resource,

searching for the sink and then unloading. From the start to when the un-

loading finishes two completed jobs will be counted. . . . . . . . . . . . . . . 29

3.2 Prototype of the Chatterbox, a small robot, running Linux and equipped

with different types of sensors and emitters. . . . . . . . . . . . . . . . . . . . 31

3.3 Occupancy grid and frontier based exploration. . . . . . . . . . . . . . . . . . 34

xi



3.4 (a) Local map: an occupancy grid built by a robot over a period of time. In

this image, white shows empty area, black shows known obstacles (enlarged

by the robot size), and gray shows unknown area. (b) Traversibility map: the

darker the cell color, the harder going to that cell is (c) Potential field map:

with zero at the target frontier and growing for neighbor cells (d) The path

the robot takes to reach the target by following the steepest gradient in the

potential field. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Randomly generated initial configurations in a partial hospital floor plan

(“hospital section” in Stage). Each map is 34×14 square meters. The robots

are the small circles each 15cm in diameter. The markers, shown as boxes,

are resource locations. (a) Initial configuration #01 (b) Initial configuration

#09. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 The mean and 95% confidence interval time (in seconds) to (a) finish each

job in one of the initial configurations (configuration number 9) (b) finish all

20 jobs in all configurations. The configurations are reordered by the time of

”no audio” method for the sake of clarity. . . . . . . . . . . . . . . . . . . . . 43

5.1 Signal levels for two 8N1 bytes sent using RS-232 standard. There are one

start bit, eight bits of data, no parity and one stop bit. . . . . . . . . . . . . 51

5.2 Block diagram for demodulation in RTTY program. c©Jesús Arias. Used by

permission. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.3 The state machine implementing the Nava audio communication layer . . . . 55

5.4 Nava packet format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.1 Single server mutual exclusion: a single central authority grants lock to the

requesting clients in order of their request times. . . . . . . . . . . . . . . . . 59

6.2 Achieving mutual exclusion with token passing. The node which has the

token can grab the lock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3 Lamport logical clocks use happened-before relation between events to time-

stamp them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 The Ricart-Agrawala algorithm for mutual exclusion uses messages that are

time-stamped with Lamport clock and the node id: (Ti, i). (a) n2 and n3

request for lock. (b) n1 replies to both. n2 replies to n3 but n2 defers the

reply and grabs the lock. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

xii



7.1 The format of four-byte audio message of mutual exclusion experiment. . . . 69

7.2 The state machine describing the possible states of the local mutual exclu-

sion method. The text under the line inside the states is the action that is

performed when entering a state. There are two separate timers to Wanted

and Silent states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.3 System architecture implementing the charging application. The robot con-

troller programs are similar software running on each robot running both the

navigation behaviors plus the mutual exclusion algorithm (a) in simulation

(b) in real-world. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7.4 Charging application using mutual exclusion in simulation. (a) Two robots

communicating to access the charger. (b) A robot is charging while two other

robots are waiting for the access. . . . . . . . . . . . . . . . . . . . . . . . . 76

7.5 The transmitted messages for mutual exclusion algorithm logged from a sim-

ulation run similar to Figure 7.4. ↓ specifies a sent message in (Type, Ti, i)

format. ↑ is a receive event. The numbers in brackets are logical clocks.

Thin lines are when the robot is requesting the lock and thick is when it

holds the lock. Dashes lines are when the robot is silent. (a) Only one robot

is requesting the lock. (b) Three robots negotiate to get the lock. . . . . . . 77

7.6 iRobot Create Programmable Robot. . . . . . . . . . . . . . . . . . . . . . . . 78

7.7 Home Base IR beams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.8 Gumstix, Wifistix, Roboaudio-TH, Microphone and Speaker. . . . . . . . . . 80

7.9 iRobot Create robots communicate to decide which one gets access to the

charger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.10 The transmitted messages for mutual exclusion algorithm logged from the real

experiment shown in Figure 7.9. ↓ specifies a sent message in (Type, Ti, i)

format. ↑ is a receive event. × is receiving noise or a corrupted message.

The numbers in brackets are logical clocks. Thin lines are when the robot

is requesting the lock and thick is when it holds the lock. Dashes lines are

when the robot is silent. (a) Only one robot is requesting the lock. (b) Three

robots negotiate to get the lock. . . . . . . . . . . . . . . . . . . . . . . . . . 81

xiii



List of Programs

2.1 Pseudo-code implementation of the shortest-path audio model. . . . . . . . . 15

7.1 The variables and functions needed for the implementation of the local mutual

algorithm shown in Program 7.2. . . . . . . . . . . . . . . . . . . . . . . . . . 72

7.2 The pseudo-code implementation of the local mutual exclusion alogrithm.

The global variables and the functions need by this algorithm are defined in

Program 7.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xiv



Chapter 1

Introduction

1.1 Goal

The homogeneous and autonomous agents of a multi-robot system can perform complicated

tasks through interacting and communicating with each other. Audio, as one of the com-

munication media used by animals and humans, has been utilized in robotic applications

before. But in multi-robot systems, compared to other communication methods, audio com-

munication is not much studied. Some properties of audio make it worthwhile to research.

For example, the relatively short transmission range of audio leads to scalability for large

numbers of robots. Also the interaction of sound waves with the environment can provide

information about surroundings to an autonomous robot.

By showing how well audio communication fits in a multi-robot system, the goals of this

thesis are:

• Study the viability of using audio communication for mobile robots.

• Study the complex properties of sound waves and show how they can be exploited in

a simple manner.

• Discuss the drawbacks and the benefits of using the sound for communication in

comparison to the more common methods already in use.

• Show how a simple propagation model can be used to kick-start the research in this

field.

• Develop a model of audio-based communication and share it with other researchers.

1



CHAPTER 1. INTRODUCTION 2

• Develop an audio communication protocol using the concepts currently used in com-

puter networks.

• Demonstrate the use of audio communication in simulated and real world tasks.

1.2 Audio in Human and Animals

Audio is defined as sound signals with periodic vibrations at human-audible frequencies.

These frequencies for a normal healthy human are between 20 and 20,000 Hertz. Audio

waves are mechanical longitudinal waves that propagate through different media such as air

and water. They are generated by movement of a part in the sound source and are sensed

by the vibration they cause in the sensor.

Audio frequencies sensible by humans and species of animals are not the same and audio

signaling is extensively exploited by them for different means. The most obvious example is

how humans use speech to communicate with each other as an important part of their lives.

We spend enormous amounts of time listening to music and studying music as a hobby. The

impact of sound and music on human feelings and behavior is well-known.

Many non-human mammals, birds and insects use sound in spectacular ways. Owls use

inter-aural time differences to localize the audio source with high precision and use it to hunt

prey [27]. Bats use echolocation, by emitting high-pitched sounds and listening to the echoes,

to gather information about the objects around them [41]. Dolphins recognize individuals

and address each other by whistling [22]. Other animals use audio to communicate with

each other or to solve territorial disputes [33].

1.3 Audio in Technology

These days many electronic devices are equipped with audio emitters and sensors. Radios,

cell phones, and most computers have sound capabilities. To sense and emit sound signals

on a computer with a sound card, microphones and speakers are used. These emitters and

sensors are generally designed to cover all or part of the human-audible frequencies.

In robotics, audio sensors are occasionally used but are not as popular as other sensor

types. They have been used both for passively sensing the environment and as a means of

communication.



CHAPTER 1. INTRODUCTION 3

As a simple and easily understandable communication mechanism, robots can use audio

to interact with humans. By use of simple beepers and buzzers as common debugging tools,

humans can perceive internal state of the robot controller over several meters and even

without line of sight.

Social, entertainment and service robots use speech synthesizers to make human under-

standable sounds [47]. Speech recognizers are used to let the humans control the robots just

by speaking to them [4].

1.4 Communication in Robotics

Sometimes the goal of an intelligent system is defined as a point where a human communi-

cating with an intelligent system could not distinguish the system from a real human [50].

This suggests the importance of studying the use of the same communication medium as

the one humans use for intelligent agents’ communication.

The use of audio as a robot-to-robot communication medium is something that is not

well studied before. The most common means of communication between robots is through

wireless data links. Communicating with the use of radio frequencies has the advantages

of being robust, fast and long-range. Nowadays, wireless communications modules installed

on cellular phones and handheld devices are cheap, compact and power efficient enough to

be used in every robot. They use standard protocols such as Bluetooth and IEEE 802.11.

Their spread spectrum capabilities let them be used in usually large numbers in the same

environment.

Another class of sensor used for communication in robotics is line-of-sight methods.

Line-of-sight communication can be implemented using infrared signaling. Infrared Data

Association (IrDA) provides fast and high-bandwidth data transfers over short distances

with a direct line-of-sight. Infrared communication is fast enough to be used for video

transmission. Visible light and laser have also been used. Researchers at NASA proposed

an optical data link to the Mars Telecommunications Orbiter using line-of-sight laser com-

munication [5].

The use of audio waves in communication has been tried out a few times before. Its

unreliability and complex propagation behaviors have often ruled it out in favor of other

communication media. But there are some properties of sound that make it unique and of

great use in sensor network and so in distributed robotic systems. For example, Girod in



CHAPTER 1. INTRODUCTION 4

his PhD research [15] developed a system of acoustic sensor arrays that use a combination

of wireless and audio communication to estimate mutual distance.

It is through interaction and communication between homogeneous multi-agents that

they can distribute a task among themselves [45]. The transmission of the information

between robots allows the organization of behaviors and management of resources. For

example, by broadcasting an alarm call to a group, robots can coordinate in a task. And

by interacting, distant agents can distribute the needed actions or establish territories.

1.5 Why Audio?

There are some interesting properties of sound which may make it attractive as an alternative

or complementary medium for robot-robot communication. Locality of audio signals is one

of them. When receiving an audio signal we know that the source is somewhere near us. Also

having information about the emitting power from the sound source and having the ability

to measure the intensity of the received sound lets us estimate this distance quantitatively.

Unlike light and infrared-based systems, in audio signals there is no need for line-of-

sight. Audio propagates around obstacles and reaches the listeners as long as they are near

enough to the source.

Audio signals form an intensity gradient as they propagate away from their source.

This gradient starts from a powerful signal near the sound source and weakens with the

square of the distance the farther it traverses. Having this gradient means that a robot

with the ability to detect sound level can estimate the relative distance from the source

and the direction of the sound, provided that it has an estimate of the emission intensity.

In many environments, such as an office building, the intensity gradient closely follows the

traversable space for a robot. Further, the steepest intensity gradient generally takes the

shortest path from source to the robot.

Huang [19] showed sound-based servoing for mobile robots to localize a sound source.

Østergaard [36] showed that even with a single microphone an audio alarm signal has a

detectable gradient which can be used to track down the path toward the sound source. They

used these audio signals to help solve a multiple-robot-multiple-task allocation problem.

When audio propagates through the environment it interacts with obstacles surrounding

the empty spaces it passes through. The waves propagate around obstacles by diffraction

and by reflection from surfaces. The energy of the reflected waves is dependent on the



CHAPTER 1. INTRODUCTION 5

material they are reflected from. This interaction of sound waves and the robot-traversable

environment means that useful environmental information can be obtained from a received

audio signal in addition to information encoded into the signal by its producer.

Most or all of the properties mentioned for audio can be said to be common among all

types of media that use waves for communication. But the following points make audio an

interesting choice for robot communication in our opinion:

• Robot-scale physical interaction of audio with the environment: Infrared is mostly a

line-of-sight only sensor. Wireless waves easily transmit through some obstacles with

a hard to distinguish difference between open-space and transmissive obstacles. Sound

waves can be considered to be somewhere between infrared light and WiFi signals in

terms of their physical interaction with the environment.

• A biologically inspired way of communication: The audio communication between the

robots can be observed by humans. It can also be used to interact with humans and

animals and at the same time with other robots.

• Easy access to directional sensors: Conventional WiFi antennae that come with most

of the electronic devices are omni-directional. Directional microphones are standard

and cheap sensors available in many devices. Directional sensors can be used to sense

the steepest gradient direction.

• Availability: Wireless communication under water is hard. Acoustic signaling is known

to be a better choice for underwater communication [44]. Currently the WiFi commu-

nication modules are expensive compared to sound devices. Sound sensors may already

be available because of other reasons for example for interacting with humans.

Still our goal is not to compete with wireless communication. WiFi, as a fast and reliable

way of communication, is getting more and more popular in robotics. Cheap wireless mod-

ules are now available and more robots are being equipped with this type of communication.

But we believe that audio is still an under-studied and attractive way of communication

that might be useful in multi-robot systems.



CHAPTER 1. INTRODUCTION 6

Simulator

Audio Model

Program

Program

Program

Program

Robot Robot

Robot Robot

(a)

Program

Program

Program

Program

Robot

Robot

Robot

Robot

Modem

Modem

Modem

Modem

(b)

Figure 1.1: System architecture of a multi-robot system running (a) in simulation with robot
controller programs using the simulator to model the virtual robots and audio communica-
tion between them (b) in real-world with robots equipped with a physical audio message
transmission modem.

1.6 Contributions

A summary of our contributions during this work include:

• Implementing a simple and practical audio signal model for simulation of audio-based

communication among multi-robots.

• Suggesting that audio communication among robots increase the team performance

even if using simple audio sensors. This hypothesis is tested in simulation using the

mentioned audio model and a prototypical task.

• Developing a network module implementing a modified Carrier Sense-Multiple Access

(CSMA) protocol for audio communication among robots in the real-world.

• Proposing a novel distributed algorithm for achieving mutual exclusion locally using

audio signaling. The method is demonstrated to work in simulation and real-world

experiments.

Our system is designed so that the implemented real-world network module can be

simulated with the audio model. This means that the same robot controller program can

be used in both simulation and real-world. Figure 1.1 illustrates a general schematic of our

muli-robot system architecture.



CHAPTER 1. INTRODUCTION 7

1.7 Thesis Outline

As we will discuss later, this work is just a starting point in the study of audio communication

for multi-robot systems. There are multiple paths that could have been taken to follow this

research and there are many parameters and implementation aspects that could have been

changed for each experiment. Though, throughout this work, we tried to study the most

important aspects of this area and generate reusable modules and code that can later be

used for more other similar studies.

This is the outline of this document:

Chapter 2: Modeling Audio Signals

First we start by developing a simple model of audio propagation that can help us to advance

the research.

Chapter 3: Sounds Good: Evaluation of Audio Communication

Having a working simulator for the physical world and propagation of sound in that world,

we take on a generic prototypical resource transportation task and show how audio can be

used to solve this class of applications.

Chapter 4: Going to the Real World

In this chapter, we discuss the large possibilities of using audio in real-world experiments.

We discuss how implementing a completely new problem while using the old tools from the

previous simulation experiments, gives us a new insight.

Chapter 5: Nava: Audio Communication Layer

“Nava” is an implementation of CSMA network communication layer over audio waves. It

provides broadcast based communication using small data packets and carrier information

to robots while trying to avoid message collisions.

Chapter 6: Mutual Exclusion for Robots

Mutual exclusion is selected for being a very interesting and useful problem in distributed

systems and a spatial version of it is implemented using audio communication.



CHAPTER 1. INTRODUCTION 8

Chapter 7: Local Mutual Exclusion Demonstration

An experiment with self-charging robots and chargers spread around the environment demon-

strates how local mutual exclusion is used in a distributed resource management application.

Chapter 8: Conclusions and Future Work

Finally this concludes this thesis.



Chapter 2

Modeling Audio Signals

To study the use of audio and as a preparation for building a multi-robot system, our first

step is to simulate the physical world and the behavior of the controller code.

Robot simulators can already model the physical world to a useful extent. They can

simulate robot movements in response to controller commands and the interaction of objects

and obstacles in the environment with robotic sensors such as infrared and laser range finders

and cameras. But to the best of our knowledge, none of the available robot simulators can

model audio in the way we need it. Having the ability to model audio propagation is our

initial attempt in the study of audio communication.

2.1 Audio Propagation

Audio waves in an office-like environment have a very complex propagating pattern. The

reason is that the sound can be partially reflected when it hits obstacles on its way. It can

also be partially absorbed by different materials if they are thick and solid enough and it

can also transmit through thin matter. The amount of the reflection and the absorption of

the original signal are largely dependent on the hit material properties, the audio frequency

and the amplitude of the wave [13]. In Figure 2.1 you can see how an audio signal emitted

from a single source can take multiple paths to get to another point.

This complex behavior of audio waves makes it very difficult to build a physically accu-

rate model of the audio propagation. Depending on the implementation such a model may

also be very computationally expensive and time consuming.

One goal for having a simulator beforehand is to speed-up the design process compared

9



CHAPTER 2. MODELING AUDIO SIGNALS 10

S o u r c e
R e c e i v e r

P r o j e c t i o n  P a t h

Figure 2.1: Audio propagation in an environment can be complex and at the same time
exhibit regular properties that can be used by robotic systems.

to using trial-and-error experiments in the real-world. This makes the move to the physical

world much easier. Even a not so accurate model that is fast and realistic enough can satisfy

our simulation requirements.

2.2 Shortest Path Model

We take a pragmatic approach to simulate audio propagation from an audio source to

multiple destinations. This simple model is similar to those used in computer games [6]. In

a computer game the simulation needs to be realistic enough to the ears of the player, while

at the same time it should be computationally feasible to run in real-time. In our case even

being able to run it faster than real-time is a positive point because then the simulator can

be sped up to run faster and this will make the results available much sooner.

Our simulator models the audio propagation by the simplifying assumption that the

sound traverses the shortest path from the speaker to the microphone and that the received

signal intensity is only a function of the length of the traversed path. This means that the

reflections or multiple paths are not modeled and that the audio is assumed not to transmit

through the solid walls.

The shortest path between the sound source and the destination shows the path to the

first direct sound. The direct sound path is the route that the most powerful transmission

will take to get to the destination. All other signals that are reflected from the walls and

then reach the target will take a longer path. A longer transmission path and the fact that

in each reflection, part of the signal gets absorbed by the hit material; means that most



CHAPTER 2. MODELING AUDIO SIGNALS 11

(a) (b) (c)

(d) (e)

Figure 2.2: The simple model simulates audio propagation as the shortest path between the
sound source and the destination. This is the path the direct and the most powerful sound
will take.

of the time all the echoed sounds will be less powerful than the direct-shortest path one.

Different scenarios are shown schematically in Figure 2.2.

2.2.1 Pros

Although a simple model, this approach still exhibits some of the useful features of the

real audio transmission. This includes locality, directionality and the gradient of the audio.

Locality and gradient are modeled by measuring the distance the wave traveled over the

shortest path. The sound direction at the destination is calculated from the vector formed

by the last piece in the shortest-path from the source to destination point.



CHAPTER 2. MODELING AUDIO SIGNALS 12

(a) (b)

Figure 2.3: The shortest-path audio model models the large difference in the received signal
intensity in the scenarios depicted in (a) and (b). In this figure, solid lines are walls, circles
are the sender and receiver robots locations and dotted lines are shortest audio paths.

See Figure 2.3 for a sample configuration in which this model simulates the difference.

Also in Section 2.5 we will discuss how the diffraction property of sound waves matches this

model.

2.2.2 Cons

When using this simple model to test a robot controller, there are some drawbacks that

should be noted. In the real world, audio reflects, echoes and may take multiple paths to

get to the target. Also in the real world sometimes the sound passes through thin obstacles.

We do not model other wave properties such the phase either. A controller that is only

designed to handle the direct sound may not work as expected in the real-world. These

situations should be handled by a smart controller design.

A solution to the above problem can be the careful use of the audio information in the

controller. Also the fusion of the audio information to the data from other robot sensors can

lead to a better sense of the real world. This information about the surrounding environment

can single out the direct sound from its reflections. This will be addressed with more detail

in Section 2.4 where the minimal simulation approach is discussed and in Chapter 3 where

a sample controller that uses audio is developed.

2.3 Implementation

Modeling only by calculating the shortest path is much faster than modeling complex audio

propagation. But still running it faster than real-time and over large maps and with large

number of audio source and destinations, requires careful implementation.



CHAPTER 2. MODELING AUDIO SIGNALS 13

(a) Map and obstacles

v1

v2

v3

v4

v5

v6

(b) Nodes

v1

v2

v3

v4

v5

v6

(c) All Edges

v1

v2

v3

v4

v5

v6

(d) Visibility Graph

Figure 2.4: These are the steps to build a visibility graph (a) of a map and its set of
polygonal obstacles. (b) The obstacle vertices form the graph nodes. (c) & (d) An edge is
added for every pair vertices that are mutually visible without hitting an obstacle.



CHAPTER 2. MODELING AUDIO SIGNALS 14

To find the shortest path between two points on a map that does not hit obstacles, we

used a computational geometry method. This method is based on a search for shortest

paths on the visibility graph [10]. The visibility graph of a map M is defined as:

For a map M in which obstacles are defined as a set of polygonal obstacles S,

the nodes of visibility graph are the vertices of S, and there is an edge, called a

visibility edge, between vertices v and w if these vertices are mutually visible.

To find the shortest-path between the two points psource and pdestination on a map M ,

first the visibility graph G of this map is built. Then the points psource and pdestination

are added as the new nodes to the graph G and then the visibility edges between these

new nodes and the old nodes are added respectively. Figure 2.4 shows the steps to build a

visibility graph of an obstacle map.

Again, this means that there will be an edge between two nodes if these two nodes are

mutually visible to each other. The value of all the edges in the graph is set to the Euclidean

distance between the corresponding points of the two vertices on the map M .

After adding the points to the visibility graph, by running the Dijkstra algorithm [11]

starting from the audio source node psource, the shortest distance and the shortest path to

audio destination node pdestination are found. If there is more than one destination point, a

single run of Dijkstra algorithm will calculate all the shortest distances and shortest paths

too.

In our simulator, instead of a polygon map, our input is a 2D floor-plan map of the

environment in a bitmap format. But for generating the visibility graph, obstacles should

be defined as a set of polygons. To do that, we find the set of potential polygon corner

points from the map. These corner points are the set of points on the obstacle boundaries

where the audio can diffract and the shortest path can potentially change its direction. We

call these points: diffraction points. As seen in Figure 2.2 these points are mostly on the

obstacle corners and convex parts of the obstacles.

To find these points from a bitmap, a 3 × 3 mask is used. The bitmap is scanned by

this mask and is matched against a predefined set of masks. This set has a list of bitmaps

that cannot be diffraction points. For example the center point in the mask of Figure 2.5(a)

cannot be a point where audio changes direction; the shortest path should either not pass

from that point or it should continue its way in parallel to the wall on top.



CHAPTER 2. MODELING AUDIO SIGNALS 15

(a) #7 (b) #73 (c) #75 (d) #495

Figure 2.5: A sample set of masks in which their center point cannot be a diffraction point
and their corresponding integer representation

1. Find the diffraction points in the map

2. Calculate the visibility graph of all diffraction points

3. For each source and target

(a) Add source and target node to the graph

(b) Add the corresponding edges between these two new nodes and all the diffrac-
tion points

(c) Calculate the shortest distance using the Dijkstra algorithm

Program 2.1: Pseudo-code implementation of the shortest-path audio model.

If the 3×3 neighborhood around a point is not found in the set, that point will be marked

as a potential diffraction point. Each one of these 3× 3 masks can be simply indexed with

a 9-bit integer. See Figure 2.5 for a sample set of these masks.

A pseudo-code of how the shortest path audio model is implemented is shown in Pro-

gram 2.1. A visual representation of these steps can be seen in Figure 2.6.

2.3.1 Complexity Analysis

The running time of the audio model algorithm largely depends on the size and the type of

the obstacle map and the number of the robots in the world. Figure 2.7 shows the diffraction

points and the shortest path found on two different bitmaps and on different source and

target positions.



CHAPTER 2. MODELING AUDIO SIGNALS 16

(a) Floor plan, source and target (b) Finding diffraction points

(c) Building visibility graph (d) Adding nodes and edges

(e) Finding shortest path

Figure 2.6: The steps to find the shortest path between two nodes in a bitmap using
diffraction points and visibility graph



CHAPTER 2. MODELING AUDIO SIGNALS 17

(a) (b)

(c) (d)

Figure 2.7: An example of a bitmap and a set of diffraction points (small green dots near
the walls). These three robots (hexagons) are sending audio signals and the lines show the
calculated shortest audio paths. Note the difference in the number of diffraction points of
different map types in (a) and (b).



CHAPTER 2. MODELING AUDIO SIGNALS 18

To find the diffraction points in a map, the bitmap is scanned against a set of masks.

The time for this step is linear to the number of pixels in the bitmap. The number of pixels

in the bitmap is derived from the map size and the map resolution. Assuming that the map

has l ×m pixels, the runtime of this step will be of O(lm).

The number of diffraction points found in a map is dependent on the map type. In an

office-like environment with rectangular walls, the number of diffraction points is usually

very small. They are only placed on the corners and not along the straight walls. In contrast,

lots of points on the convex side of a curved surface can be diffraction points. In its worst

case, on the perimeter of a circular obstacle, there are infinite points where audio can change

its direction. Since we use a bitmap presentation of the map, this number is limited but

still can slow down the process if the map has a high resolution. Compare the number of

diffraction points in Figure 2.7(a) and Figure 2.7(b).

Building a visibility graph from the diffraction points needs a loop over every pair of

points and then calculating whether this point pair are visible to each other or not. Checking

for visibility between two points on a bitmap might need a O(l) calculation where l is the

map size but our simulator provides us with a quad-tree implementation for quicker lookup.

If d is the number of diffraction points found, the time order of this step will be smaller

than O(d2l). Refer to Section 2.4 about the simulator we use.

Finding diffraction points and building the initial visibility graph is only done once in

the initialization of the simulator. As long as the number of the diffraction points found is

not very large, the initialization time will be reasonable. For example in an experiment with

near 3000 points, the visibility graph was built in around 90 seconds. In most experiments

where the number of the points is under 1000, the initialization is done in less than 10

seconds. To increase the speed, number of diffraction points can be decreased by using

more office-like maps or by lowering the map resolution.

After the initialization to calculate the sound paths, in each simulation step all the

transmitting and receiving nodes are added to the visibility graph. Then the corresponding

edges are added to the graph and the Dijkstra algorithm is run for each sound source. If n

nodes are added to the graph, finding the visibility of nodes to the existing nodes in the graph

and adding the edges is of O(ndl) (each node should be compared against each diffraction

point for visibility). We use a binary heap in our Dijkstra algorithm implementation but

we have to run Dijkstra one time for each sound source.

If m of the n added nodes are sound sources, the order of finding shortest-path is



CHAPTER 2. MODELING AUDIO SIGNALS 19

O(m(e + d + n)log(d + n)) where e is the number of edges in the final visibility graph.

Normally the number of nodes (n) is smaller than number of diffraction points (d) and that

is much smaller than number of edges (e). In the worst case, number of edges in graph (e)

can be as large as (d + n)2 (As if all nodes are visible to each other).

We can say that the largest part of the order of this algorithm usually is O(md2log(d)).

This again shows the importance of making the number of diffraction points small. Also

to decrease the number of edges in the graph, we set a maximum hearing range, thus the

visibility only needs to be checked between vertices that are in the hearing range of each

other.

If in an experiment the number of sound sources (m) was a comparable number to the

number of diffraction points (d) it might be better to use Floyd-Warshall algorithm [12]

instead of running Dijkstra algorithm m times. Floyd-Warshall calculates the shortest-

distance in O(V 3) where V is the number of vertices in the graph. But in most of the cases

that this simulator is going to be used for, m� d⇒ O(md2log(d)) < O(d3).

To speed-up the simulation and to avoid duplicate calculations a cache structure is also

implemented. The cache stores the recently calculated paths for point pairs. Most cache

hits happen when there are static nodes in the world.

2.4 Stage model

The Player project1 provides free software tools for robot and sensor applications [14]. The

Player robot server is probably the most widely used robotic control interface in the world.

It provides an abstraction layer between the robot controller code and the drivers talking

to the robotic hardware [52]. This abstraction lets the real devices to be replaced with

simulated ones.

“Player is a device server that provides a powerful, flexible interface to a

variety of sensors and actuators (e.g., robots). Because Player uses a TCP

socket-based client/server model, robot control programs can be written in any

programming language and can execute on any computer with network con-

nectivity to the robot. In addition, Player supports multiple concurrent client

1http://playerstage.sourceforge.net/



CHAPTER 2. MODELING AUDIO SIGNALS 20

connections to devices, creating new possibilities for distributed and collabora-

tive sensing and control.” 2

Stage is the most famous simulation engine for Player. It is a two-dimensional simulator

that can simulate the interaction of multiple robots with the environment and with each

other at the same time. There are various sensor and actuator models included with Stage.

These include range finders like lasers and sonar, cameras and grippers. Stage can also

model rechargeable energy storages like batteries on a robot.

“Stage is a scalable multiple robot simulator; it simulates a population of

mobile robots moving in and sensing a two-dimensional bitmapped environment,

controlled through Player. Stage provides virtual Player robots which interact

with simulated rather than physical devices. Various sensor models are provided,

including sonar, scanning laser rangefinder, pan-tilt-zoom camera with color blob

detection and odometry.” 2

Both Player and Stage are released as open-source software under GNU General Public

License3, thus making it easy and free for the researchers to use, distribute and modify

them. Because of the availability of the Player and Stage and their ease of use, we decided

to develop our controller code based on this platform. Stage was providing us with all the

needed simulation functionalities that we needed with the exception of the audio propagation

model.

In the usual configuration, each robot controller program connects over a TCP net-

work connection to the Player server and then subscribes to the different sensors or sends

commands to the actuators. These sensors and actuators can be real robot hardware used

through the abstraction provided by Player or they can be simulated devices provided by

Stage. By adding the Player provided abstraction to the system architecture of Figure 1.1(a)

and thus achieving Figure 2.8(b) we can use the same controller program in both simulation

and real-world.

In the first attempt, we implemented the audio model as a controller client connecting

to the Player server. The controller code was based on the Playernav utility written by

Brian Gerkey, included with Player distribution. The client was subscribing to the position

2http://playerstage.sourceforge.net/index.php?src=faq
3http://www.gnu.org/copyleft/gpl.html



CHAPTER 2. MODELING AUDIO SIGNALS 21

Player

Stage

Program

Program

Program

Program

Audio Model Client

(a)

Player

Stage

Audio
Model

Program

Program

Program

Program

(b)

Figure 2.8: The audio propagation model calculates the shortest-path distance between
the virtual robots in the simulated world and dispatch messages between robot controller
programs that are connected as clients to Player. The audio model can be implemented in
two ways: (a) The initial version connected a client to Player. (b) The new model integrated
into Stage.

devices of all the robots and getting their position information. It had a TCP/IP server

to which each robot could connect and send and receive audio messages from other robots.

See Figure 2.8(a).

We later added the audio propagation model to Stage itself. Figure 2.8(b) shows the

new architecture. Stage uses some internal structures for fast calculation of ray tracing. It

uses a quad-tree to store obstacles as rectangles. This way of storing the obstacles lets the

Stage to calculate the direct visibility between two points much quicker. Instead of going

over all bitmap pixels between these two points, Stage just jumps over empty areas that

have no obstacles. See Figure 2.9. The ability to access these internal structures for the

fast construction of the visibility graph was one of the main reasons to include the audio

model in Stage. Integrating our propagation model with Stage also makes it easier for

other researchers to use it along with Stage in other experiments. Figure 2.10 shows Stage

modeling the audio message paths between four robots.

Stage takes a minimal approach for simulation of real-world physics. It provides simple

and computationally cheap model of devices with good enough fidelity. It does not try to

gain great fidelity or emulation of noise in the real-world which can be hard to achieve and

computationally expensive. This model encourages the robust control techniques proposed

by Jakobi [21]. The simple models in Stage provide a one-way validation environment for

robot controllers.



CHAPTER 2. MODELING AUDIO SIGNALS 22

Figure 2.9: Ray tracing in Stage using a quad-tree matrix for speed-up.

Figure 2.10: Player/Stage modeling the audio message paths between four robots.



CHAPTER 2. MODELING AUDIO SIGNALS 23

If a robot controller does not work in Stage simulation, it is likely to have problems in

the real-world too. The reverse argument is not guaranteed to be true: a working controller

in simulation does not necessarily work in the real-world. But in practice if the controllers

are designed intelligently and tested in Stage, the migration to the real-world in most cases

would be easy and with small amount of changes in the code. This good-enough accuracy

and cheap computational price with mostly linearly scalable models in Stage makes it an

easy to scale simulator for large multi-robot experiments.

Our model of audio propagation follows the same design principles of the Stage simulator.

It is a simple model which does not provide accurate simulation but tries to be fast and

provide validation facility for testing controller code. The audio model implementation does

not scale linearly but it is a polynomial time algorithm which is much faster than modeling

a high-fidelity simulation.

The code for the latest development release of the Stage that includes the audio model

can be downloaded from the Player/Stage project on SourceForge.net4.

2.5 Complex Model

Audio waves in reality have a very complex behavior. As discussed before, in our audio

model we decided to use a simple model because of its speed and ease of implementation.

But researchers have also attempted to model the propagation of sound waves and all its

interactions with the environment.

A physically based sound propagation model can handle all these interactions of sound:

• Intensity drop while traversing: follows the inverse square law.

• Absorption by the hit object: dependent on the material type and audio frequency.

• Reflection: follows the law of reflection and dependent on the material type and

audio frequency.

• Interference of waves: follows superposition law.

• Refraction: when there is a change in the medium properties.

• Diffraction: bending and spreading out around the obstacle edges.

4http://sourceforge.net/cvs/?group_id=42445



CHAPTER 2. MODELING AUDIO SIGNALS 24

Sound Source

Original
Waves

Diffracted
Waves

(a)

Sound Source

Original
Waves

Diffracted
Waves

(b)

Sound Source

Original
Waves

Diffracted Waves

(c)

Figure 2.11: Diffraction of audio waves around obstacle edges matches the shortest-path
simplification of audio model. (a) Waves passing through a narrow slit. (b) Diffraction
behind a wall. (c) Diffraction around an obstacle.

Accurately modeling reverberant sounds allows the prediction of the acoustic properties

of the environment [8]. Sample usage for such a model include sound synthesis, modeling

of auditoriums, sound generation in computer games, learning the cues for localizing the

sound sources as well as its use in robotics applications.

Such a complex model can also be used to validate the already developed simple model

against the physical world and to tune the parameters of this simple model to be as near as

possible to the real world. Different scenarios of the wave diffraction shown in Figure 2.11

show how the simplified calculation of the shortest-path between the sound source and the

target is not that far from the reality of wave behavior.

There are different methods to develop a physically based sound propagation model [13].

Karimian (the author of this thesis) under supervision of Dr. Torsten Möller has developed

such a model. “Using Computer Graphics Techniques to Model Acoustics” 5 was done as

a course project for Fall 2005 Simon Fraser University’s CMPT770 Advanced Computer

Graphics course.

This implementation is based on a 3D graphics rendering technique named Photon Map-

ping [23]. In photon mapping instead of calculating all the possible reverberation paths,

a random sampling of the problem space using photons, as small light packets, is used to

estimate the real solution. In similar approaches, Phonon Tracing [3] or Sonel Mapping [24],

developed for sound modeling as the first step, the space of the problem is sampled randomly

with a large number of small sound packets (a.k.a. sonels or phonons) shot from the source.

5http://www.sfu.ca/~pkarimia/courses/cmpt770graphics/proj/



CHAPTER 2. MODELING AUDIO SIGNALS 25

Figure 2.12: Two wooden blocks placed in a circular ripple tank with a slit between them,
creating circular waves. Beneath the ripple tank was a sheet of white paper, where the wave
patterns appeared due to a light source above the ripple tank. c©Armed Blowfish. Used by
permission under the BSD license.7

These small packets will propagate through the space according to the wave propagation

properties. The probability of a packet reflecting or getting absorbed is calculated from the

hit material’s preset attributes. In the second step, each propagated packet now residing

somewhere in the world will be treated as a small source of sound itself and an estimation

of the real-world propagation will be calculated.

Most graphics rendering methods assume that the light will only propagate along a

straight line unless it hits an object. But diffraction of the sound waves makes them different

from light. In the photo shown in Figure 2.12 a ripple tank is used to model how waves

diffract when going through a narrow slit. To model diffraction property of waves researchers

have tried different models such as the Uniform Theory of Diffraction [49] or Huygens Fresnel

principle [25].

The “Huygens Fresnel principle” of waves analyzes wave propagation by modeling it as

a sum of small secondary waves (a.k.a. wavelets) that are along the advancing wave front.

Each of these points along the wave will itself be regarded as a new source of wave [17].

This principle can model how sound waves diffract. See Figure 2.13.

7
Copyright c©Armed Blowfish, all rights reserved. Redistribution and use in source and binary forms, with or without modification,

are permitted provided that the following conditions are met: Redistributions of source code must retain the above copyright notice,
and this list of conditions; Redistributions in binary form must reproduce the above copyright notice, and this list of conditions in
the documentation and/or other materials provided with the distribution; Neither the name of Armed Blowfish nor the names of other
contributors may be used to endorse or promote products derived from this software without specific prior written permission.



CHAPTER 2. MODELING AUDIO SIGNALS 26

Figure 2.13: Huygens-Fresnel principle analyzes how waves are diffracted using a sum of
small secondary waves along the advancing wave front. Compare this Huygens-Fresnel ana-
lyzed model with a real photo of wave diffraction shown in Figure 2.12. c©Arne Nordmann.
Used by permission.

The Huygens Fresnel principle is suitable for use in a Photon mapping method. Each

sound packet in the rendering algorithm will be treated as a Huygens wavelet and its propa-

gation probability is sampled according to the Huygens Fresnel principle. Figure 2.14 shows

a sample output of that project modeling an audio source near two vertical walls. There you

can see the effect of the reflection and the diffraction of the sound waves in the interaction

with objects.

The time complexity of physical modeling of sound propagation is exponential but an

approximation algorithm, like the method described shortly above, can bring it down to

polynomial time. But still the number of calculations and the complicated rendering al-

gorithm makes it too slow for a real-time simulation. There are attempts to solve this

problem by making use of the computational power of the graphics accelerators or physics

cards which are the hardware based acceleration expansion cards for personal computers.

However, for the near future we are restricted to less realistic, but fast and approximate

models, such as the one described in Section 2.2.



CHAPTER 2. MODELING AUDIO SIGNALS 27

Figure 2.14: A complex audio propagation model, modeling the direct sound, reflection and
diffraction of audio waves. Such a model can provide high accuracy but will be computa-
tionally expensive.



Chapter 3

Sounds Good: Evaluation of Audio

Communication

The work described in this chapter is published as “Sounds Good: Simulation and Evaluation

of Audio Communication for Multi-Robot Exploration” that was presented at IEEE/RSJ

International Conference on Intelligent Robots and Systems (IROS’06) in Beijing, China

[26].

Having a fast simulator equipped with an audio propagation model lets us study audio

communication in multi-robot tasks. Emulating robotic tasks that use audio messaging

allow us to gather more information and get an insight into the usefulness of this type of

communication.

To guide the design of a multi-robot system, in the “Sounds Good” experiment, we

evaluated two different types/designs of audio direction sensor:

• Omni-directional sensor with high accuracy in detecting sound direction.

• Bi-directional sensor with a one bit direction resolution.

The questions that motivated the work in this experiment were simple:

• Can audio communication, even utilized in a simple way, enhance the performance of

a group of robots?

• Do our robots need accurate sound localization to get significant benefits from audio

signaling?

28



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 29

S o u r c e

S i n k

R o b o t

S t a r t

E x p l o r i n g

S e a r c h  f o r  t h e  s o u r c eS e a r c h  f o r  t h e  s i n k

E x p l o r i n g
L o a d i n gU n l o a d i n g

J o b  # 1J o b  # 2

Figure 3.1: A schematic of the examined resource transportation task for a single robot.
The robot starts by searching for the source, loading a virtual resource, searching for the
sink and then unloading. From the start to when the unloading finishes two completed jobs
will be counted.

3.1 Task Definition

The first step we took to study the usefulness of audio in practical robot applications was

to define a task and then try to show the use of the audio communication in that duty. The

task definition should be general and prototypical and it should be functionally similar and

applicable to other problems and applications.

As a motivating example, we examine a general resource transportation task which at

the same time requires robots to explore the world. The exploration is to find and then go

to the two initially unknown locations corresponding to a source and a sink of some notional

resource. After finishing the loading at the source; the robots then move to the sink for

unloading. A schematic of this task is shown in Figure 3.1.

This importance of this task is that it is functionally similar to the various exploration

and transportation scenarios that have been previously studied. Vaughan in [53] showed

how a team of real-robots cooperate with each other to robustly transport resource between

two locations in an unknown environment. In that work, the robots share information with

each other through the direct modification of the environment inspired by the trail-laying

of ants.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 30

Audio communication can be regarded as a way of modifying the environment. But in

comparison to other methods such as trail laying or radio frequency communication, audio

messaging is bio-inspired, easier to implement, temporary and harmless to the environment.

It can be sensed when the robot in the proximity of the sound source. But it can only be

sensed as long as the source is still emitting sound.

In our defined task, a completed job is defined as finding one marker and spending a

fixed amount of time there (30 seconds in our case) working (loading/unloading) and then

changing the goal to another marker. The metric of the success is the time taken for the

entire team to complete a fixed number of these jobs: trips between the source and the sink

(20 trips in our experiment).

A group measure like the one that is selected will show how the whole team performs

rather than evaluating individual robots. Selecting the time to finish a fixed number of jobs

as a measure rather than counting the number of the jobs finished in a fixed amount of time

provides a better resolution. In the latter case, the time can be over while a job is near

finishing and thus this benchmark will not include the partial job.

With such a definition for the success measure, the amount of work done in unit time

can be increased by adding additional robots. If the robots act independently performance

increases linearly with the number of robots added until interference between robots becomes

significant. If the robots are not independent but instead actively cooperate by sharing

information, we can expect to improve performance further [54].

In these experiments we examine the effect of robots generating audio signals to announce

the proximity of a target on the overall system performance.

3.2 System

At Simon Fraser University’s Autonomy Lab1, we build life-like machines. Our goal is to

increase the autonomy of robots and other machines.

Our interest is in designing systems of many small, low-cost robots. In this experiment,

we assume our robots to be similar autonomous agents with little computational power and

memory. As the robots are individually autonomous, having shared memory or a map of

the world will not be trivial for them. The robots’ initial positions are random and the

1http://autonomy.cs.sfu.ca/



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 31

Figure 3.2: Prototype of the Chatterbox, a small robot, running Linux and equipped with
different types of sensors and emitters.

world will be large compared to the size of the robots and it is not practical for these small

indoor robots to have an accurate global localization. Even relative positioning is hard to

achieve because of not having a perfect odometer.

At the Autonomy Lab, we are working on the “Chatterbox” project which is building

forty small robots to study long-duration autonomous robot systems. These robots run

Linux on Gumstix2 single-board computers. At the time of this experiment, the design of

the swarm was to build small two-wheeled robots, each 15cm in diameter (a little larger

than a CD) and the same height and a maximum speed of 30 cm/second. They will work

in large, office-like environments which is too large for the robot to store a complete world

map. Figure 3.2 shows a prototype of this robot.

As the robots were not ready at the time of this project and our goal was to boost the

design step; this experiment is done in simulation. The simulations used only the same

sensors and actuators that we planned to make available on the real robots.

The simulated sensors are configured to match the real devices as closely as possible

given the limitations of Stage. For avoiding the obstacles and to build a map of the robot

surroundings, eight infrared sensors with a range of 1.5 meters, similar to the Sharp GP2D12

ranger device, are used.

2http://www.gumstix.com/



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 32

Microphones are low-cost audio sensors and we tried to take advantage of the power of

these sensors. In addition to the microphones, our robots are equipped with some other

low-cost sensors: a single loud-speaker, infrared rangers, and a low-resolution CCD camera

with a range of five meters.

The camera and a simple hardware-based image blob finder are used to identify the

markers showing the position of the source and the sink locations. This camera is assumed

to be similar to the design of the CMUCam [39]. The camera can be substituted with any

other fiducial-type sensor with the well-known ability to guide the robot to a nearby line of

sight object.

Two configurations of the simulated audio sensor were tested: omni-directional, i.e.

giving high-resolution information about the direction to a sound source, and bi-directional,

giving only one bit of direction data. The maximum audio receiving range was set to 15

meters.

To design and evaluate our system we used the Player/Stage [14] robotics package. Robot

controllers are written as clients to the Player robot interface server which provided device-

independent abstraction layer over robot hardware. The robots’ hardware, movements and

interactions with obstacles are simulated in Stage and it generates the appropriate sensor

data. In our system, all the sensors and robot parameters in Player and Stage are set to

model the real-world scenario as closely as the software will allow.

At the time of this experiment, the audio model had not yet been integrated into the

standard Stage distribution. The audio model was implemented as client software connected

to Player. The audio client obtains map and robot position data from Player, and acts

as a communication proxy between the robots. Robots emit sound by making a request

to the audio client. Our audio model client calculates the shortest distance between the

transmitting robot and all receiving robots. The intensity of the received signal is determined

by the distance traveled. If any of the robots receive a sound above a minimum threshold,

the audio client transfers the sound data including the received intensity and direction to

the receiving robot.

But since these experiments were done, as discussed in Section 2.4, the model is now

moved into the development branch of Stage. The availability of audio propagation simu-

lation in Stage plus the provided physical audio module in Player (See Chapter 5) makes it

much easier to use the same controller code used in simulation in the real-world.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 33

3.3 Implementation

The source and sink are two arbitrary, distinct world locations. The source and sink,

respectively, provide and consume units of some abstract resource to and from the robots.

The robots transport this virtual resource from source to the sink. This models robots

transporting widgets around a factory or mail around an office, for example. In order

for the robots to be able to find them, these locations are marked with optical fiducials

(here after markers), visible in the on-board camera only over short distances with line of

sight. Robots must find the source and sink locations and travel between them as quickly

as possible. Without global localization, the robots need to explore the world to find the

markers that indicate source and sink. On reaching a marker, a robot stops there for a

short, fixed amount of time intended to model the robot doing some work at that location,

such as grasping an object. After this time is up, the robot seeks the other location marker.

This way of implementing the system permits marker locations to change arbitrarily over

time.

Given a complete map of the environment and perfect localization of robot and all re-

source locations (hereafter targets) we can apply standard planning techniques to achieve

near-optimal performance. In dynamic indoor environments this kind of world knowledge

is costly or impossible to obtain. An alternative trivial solution is for the robot to wander

randomly until it bumps into a target. This method will give poor expected performance in

large environments, but it has the attractive feature that it does not make any assumptions

about, or require any knowledge of, the environment. Better-performing single-robot solu-

tions require more sophisticated search strategies that make certain assumptions about the

world. For example by remembering the location of previously-seen targets we can find them

again quickly, assuming that they do not move: an assumption that may not hold in dy-

namic environments. Any implemented system must select a search strategy that trades off

performance, assumptions and world knowledge. A reasonably-performing, scalable system

based on local maps is proposed below.

Without having a global map of the environment and/or any prior information about the

location of the source and sink, the robots have to explore the world to find the markers.

As a way of communicating with other robots and feeding them with information, while

exploring the world each robots will periodically announce by audio the markers it saw in

the last 10 seconds.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 34

R o b o t

N e a r e s t  f r o n t i e r
t o  t h e  r o b o t

O b s t a c l e

O p e n  s p a c e

U n e x p l o r e d

F r o n t i e r s

Figure 3.3: Occupancy grid and frontier based exploration.

3.3.1 Frontier Based Exploration

There are many different approaches that can be taken for exploration to find markers.

One suitable method is frontier-based searching proposed by Yamauchi [58]. In frontier-

based searching each robot uses an occupancy grid with three states: empty, obstacle, and

unknown/unexplored for each cell to store the global map. Initially, the entire world is

unexplored, but as the robot moves, the occupancy grid will be filled using the sensor

readings. Frontiers in this occupancy grid are defined as those empty cells that have an

unknown cell in their 8-connected neighborhood. Each robot moves towards the nearest

frontier and gradually it explores all the traversable areas. Selecting the nearest frontier is

a greedy strategy to minimize the traveling cost. The exploration is complete when there

are no more accessible frontiers. The frontier-based approach guarantees that the whole

traversable area of the map will be explored. Figure 3.3 shows an occupancy grid around a

robot and the nearest frontier to the robot.

Yamauchi in [59] also proposed the same algorithm for multi-robots by using a shared

occupancy grid between all the robots. In the Sounds Good experiment we use an adaptation

of the original single robot approach. It is described below.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 35

3.3.2 Local Map

Our constraints require that the robot has no a priori global map, has no means to globally

localize itself, and has conventional odometry with unbounded error growth. But producing

a global map during the exploration of a large world has a high computational cost and

needs a large memory for storing the information. We wish to avoid the memory and

computational cost, yet still perform an effective exploration.

Our approach is to maintain a short-range occupancy grid of robot’s current neighbor-

hood, centered at the robot. This is a fixed size occupancy grid that we call a local map.

As the robot moves, the local map is updated continuously from sensor data. Because the

local map only contains the information about the neighbor cells, some of those cells may

“fall off” the edge of the local map as the robot moves, and are lost.

To explore the world we use frontier-based exploration but on a local map instead of a

global occupancy grid. We assume the state of all cells outside the map is to be unknown.

This means that all empty cells on the map border are frontiers and thus can be selected

as a potential robot target. This guarantees that, unless the robot is stuck in a closed wall,

it will eventually traverse to the map borders and thus moving the local map to cover the

unexplored areas outside the local map.

The local map uses constant memory, unlike the global map, which uses memory pro-

portional to the area explored. But unlike the original frontier-based searching, using a

local map has the disadvantage that long term cycles in robot position are not detectable.

A robot avoids visiting a previous cell as long as that cell is covered in the map and marked

as visited. But in a local map information far from the robot will be lost. We later try to

avoid this problem by added randomness to the exploration and robot movements.

We modify the original frontier-based method so that each cell value in the map expires

after a fixed amount of time and reverts to unknown. This is to cope with the dynamic

elements of the world such as other robots, which may look like obstacles to the sensors.

This would also take care of possible sudden errors in odometry such as wheel slips.

3.3.3 Using Audio Information

We aim to discover whether audio signaling can be used to improve performance of a robot

system searching for the markers. To be feasible for real-world implementation in the short

term, we allow only very simple audio messages, representing single values from a pre-set



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 36

range. This will be something similar to robots using Dual-Tone Multi-Frequency (DTMF)

code, as used by a touch-tone telephone, to talk to each other. When a marker is seen

and while it remains in view, the robot generates a DTMF tone identifying the marker. By

continuing to announce the marker for a short period of time after the marker is no longer in

view, it allows other robots to continue to receive location information, thereby increasing

their chance of finding the markers. In our experiments this time is set to 10 seconds.

In addition to receiving the marker number, other robots in the audible range will know

audio volume and the direction from which the sound arrived. This is feasible in the real

world: Valin [51] showed how microphone arrays can be used to detect the angle with high

precision. However, a far simpler configuration is to have only two microphones and the

direction can be simplified to two states: depending on the microphone placement, this

could be front or rear, left or right.

In the original frontier based search, the target frontier point selection is based on its

distance to the robot. This is a simple greedy approach that can be replaced by any scoring

function. In the original algorithm case, the nearer the frontier is the higher the score it

will get. Other sources of information can be added to this scoring function to optimize for

other criteria rather than achieving minimum travel [35].

In our problem the goal is to minimize the time to find the marker locations. To do this

we add the information we received through audio messages to our selection scoring. To

select the goal point on the local map, a cost function which selects a frontier cell is used.

Cell selection can be based on multiple weighted factors including distance to that cell,

a random weighting (to add stochasticity to help avoiding the loops), or the information

extracted from the audio messages.

To use this information from the audio sensor, the messages received are stored in a

queue each with an arrival time-stamp. Each cell can now be scored based on the received

messages and this score is subtracted from the distance cost for scoring frontiers. These are

the factors for scoring each cell based on one message:

• Difference of cell direction compared to message direction (-1.0 to 1.0)

• Message age (0.0 to 1.0)

• Message intensity (0.0 and 1.0)



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 37

In our implementation, for a cell c = (cx, cy), and the set M of messages, where each

message is m = (mdata,mθ,mlevel,mage), the cost function is:

f(c,M) = |c|+ G− w
∏

m∈M

(Θ(mdir − cdir)Ω(mage)Φ(mlevel))

In which, |c| =
√

cx + cy is the cell distance from robot. G is a small Gaussian random

value with a mean of zero. w is a fixed weight. For 0 < x < 2π, Θ(x) = π−2x
π

, which is

the direction difference factor. This is an approximation for Θ(x) = cos(x). Ω(mage) is the

message age factor and Ω(mlevel) is the intensity factor. Messages are discarded from the

queue after three minutes.

This method of adding and subtracting different terms from the scoring function of

the frontier-based searching is a searching algorithm that is aware of robot’s surrounding

environment. It lets us easily compare the effect of using different types of information in

the scoring function. It uses all the information for decision making but at the same time it

only ranks the unexplored area frontiers and not the obstacles nor the previously explored

areas. Although this may not be clearly seen in the simulation experiment where we assume

the audio only traverses the shortest path through the open areas. In the real-world, a single

sound can be heard from different directions because of reflection or transmitting through

the materials. A frontier based exploration will never try to explore through a wall just

because it heard a sound coming from that direction. Instead it will be more affected by

the direction of the strongest message that corresponds to the shortest path wave.

This method, although being an easy way to add audio information into the search, has

some problems. If there are two messages that are from two opposing angles the robot will

take the frontier that is in between these two. This is not always the best choice. But still

in most cases this simple scoring function will perform reasonably.

Of other possible expansions to this system is a bias in favor of the current direction of

the robot to prevent the robot from making cyclic decisions. It is also possible to generate

repelling sounds as well as attracting sounds. This means that a robot can signal others

not to go near it, causing the robots to spread throughout the map. One sample scenario

is when a robot fails to see a marker for a long period of time it can start generating a

repelling sound. This time-based approach, depending on the map configuration and the

markers’ positions, has its own drawbacks. For example a robot can start repelling other

robots from its current position while the marker is hidden somewhere near it. A better



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 38

but harder-to-implement method is to generate the repelling sound based on the amount of

area already explored near each robot. However, none of these methods are implemented in

our experiments.

3.3.4 Path Planning in a Local Map

For obstacle avoidance and planning we combine the local map with a potential field path-

planning method due to Batavia [2]. Using the collected environment information stored in

the local map, to avoid the robot hitting the obstacles, the obstacles will be grown by the

size of the robot.

From this new map a traversibility map is built. The traversibility map is the result of

applying a distance transform to the obstacles in the local map. The distance transform

operator numbers each cell with its distance from the nearest obstacle, so a non-empty cell

is numbered as zero; all its empty neighbors will be one and so on. In our implementation,

a city-block (“Manhattan”) distance metric is used, thus assuming travel is only possible

parallel to the X and Y axes.

Occupancy grid cells marked “unknown” are handled as empty cells. An exponential

function on the value of a cell in the traversibility map shows the cost of moving to that

cell. This forces the robot to maintain a suitable distance from obstacles while not totally

blocking narrow corridors and doorways.

A wave-front transform is then used to generate a robot-guiding potential field from the

local map and traversibility map. The field is represented by a bitmap in which the value

of each cell indicates the cost of moving from the goal to that point. It is implemented by

a flood fill starting from the target cell, valued 1, and numbering all other cells with their

minimum travel cost from the target. The cost function is the city-block distance plus the

risk of getting near to an obstacle. This risk cost is taken directly from the corresponding

cell in the traversibility map.

By always moving from a cell into the lowest-valued adjacent cell, the robot takes the

optimal path to the target. If implemented using FIFO queues, both steps of this algorithm

scale O(n), where n is the number of cells in the map - a fixed value in our implementation.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 39

(a) (b)

(c) (d)

Figure 3.4: (a) Local map: an occupancy grid built by a robot over a period of time. In this
image, white shows empty area, black shows known obstacles (enlarged by the robot size),
and gray shows unknown area. (b) Traversibility map: the darker the cell color, the harder
going to that cell is (c) Potential field map: with zero at the target frontier and growing
for neighbor cells (d) The path the robot takes to reach the target by following the steepest
gradient in the potential field.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 40

Config#
No Audio Bi-directional Omni-Directional
µ σ µ σ µ σ

#01 11631.8 2642.9 7427.4 2480.8 6669.9 1622.5
#02 7046.9 2310.7 1679.4 571.9 1724.3 492.1
#03 6575.8 2656.3 1598.2 1017.6 1782.8 1266.4
#04 2912.1 726.3 2097.9 814.2 1851.7 795.3
#05 3227.6 684.0 1290.3 478.1 1050.3 305.7
#06 4525.9 713.5 636.5 63.8 715.4 636.9
#07 5731.6 1335.1 4144.1 858.1 4459.3 1084.1
#08 4345.9 919.9 601.4 74.7 542.6 42.9
#09 9925.8 3444.0 4360.8 1550.5 3431.7 1063.5
#10 546.3 192.8 295.3 29.4 278.1 34.0

Table 3.1: Mean and standard deviation of time to finish an experiment using different types
of audio sensors and on different starting configurations. The numbers are in seconds. Each
mean and deviation is calculated using 20 different experiments.

3.4 Experiment

The environment map for this experiment is the “hospital section” map distributed with

Stage, which is derived from a CAD drawing of a real hospital. It is a general office-like

environment with rooms and corridors and a total size of 34 by 14 meters. The map is large

compared to the robot’s size and sensor ranges (it is 227× 93 times a 15× 15cm robot size).

A starting configuration is a list of starting (position, angle) tuples for robots and the

position of the two markers (working areas). A valid starting configuration is a starting

configuration in which no object is placed over an obstacle and all markers are reachable.

Ten different valid starting configurations are randomly generated.

The time for a complete job is defined as finding one marker and spending 30 seconds

there working (loading/unloading) and then changing the goal to another marker. In each

experiment the time for completing a total of 20 jobs by 5 robots is measured. It is possible

that different robots will complete different number of jobs. This means that if one robot

becomes stuck somewhere, the other robots can still continue to work.

We ran 20 experiments of 3 different methods over 10 different starting configurations,

for a total of 600 simulation trials. Table 3.1 summarizes the results for all the starting con-

figurations and for three different audio configurations: 1) no audio sensor, 2) bi-directional

microphone and 3) omni-directional sensor. Figure 3.6(a) shows the mean and the 95%



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 41

(a)

(b)

Figure 3.5: Randomly generated initial configurations in a partial hospital floor plan (“hos-
pital section” in Stage). Each map is 34×14 square meters. The robots are the small circles
each 15cm in diameter. The markers, shown as boxes, are resource locations. (a) Initial
configuration #01 (b) Initial configuration #09.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 42

confidence interval of time to finish each job in one of the initial configurations (Configu-

ration number #09, shown in Figure 3.5(b)). The chart shown in Figure 3.6(b) shows the

time to finish the total 20 jobs for all initial configurations. It can be seen that the most

important factor in the total time to finish the job is the initial configuration and especially

the position of the two working areas. In configuration #01, shown in Figure 3.5(a), the two

markers are far apart and the job-completion times for all methods seen in the chart shown

in Figure 3.6(b) are large. However in some configurations like configuration #09 shown in

Figure 3.5(b), differences in mean completion times between the three sensing methods are

visible.

3.5 Results

To analyze these differences we ran t-tests between every pair of methods on each map

to determine which pairs have significantly different means. From the results depicted in

Table 3.2, we found that:

• For every map, there is a statistically significant difference between no audio and any

method which uses attracting audio.

• Only two of the configurations using omni-directional sensors were statistically differ-

ent from bi-directional ones

• Of these two, the differences were inconsistent.

Given these results, we conclude that:

1. Using attracting audio can affect the performance significantly.

2. As there is no statistically significant difference between an omni-directional and a

bi-directional microphone and the bi-directional sensor is cheaper and requires less

signal processing, the use of a simple bi-directional microphone can be recommended.

It should be noted that the size of the performance gain given by using audio is likely to

be sensitive to the implementation parameters and environment properties. It also seems

likely that the 1-bit audio direction sensor would not perform so well in less constrained

environments.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 43

(a)

(b)

Figure 3.6: The mean and 95% confidence interval time (in seconds) to (a) finish each job
in one of the initial configurations (configuration number 9) (b) finish all 20 jobs in all
configurations. The configurations are reordered by the time of ”no audio” method for the
sake of clarity.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 44

Method 1 Method 2 Config # Perf. gain % t-Test Significance % Different?

No audio Bi-dir #01 56.6 5.2 0.001 Yes
No audio Bi-dir #02 319.6 10.1 0.000 Yes
No audio Bi-dir #03 311.4 7.8 0.000 Yes
No audio Bi-dir #04 38.8 3.3 0.190 Yes
No audio Bi-dir #05 150.1 10.4 0.000 Yes
No audio Bi-dir #06 611.0 24.3 0.000 Yes
No audio Bi-dir #07 38.3 4.5 0.007 Yes
No audio Bi-dir #08 622.7 18.1 0.000 Yes
No audio Bi-dir #09 127.6 6.6 0.000 Yes
No audio Bi-dir #10 85.0 5.8 0.000 Yes
No audio Omni-dir #01 74.4 7.2 0.000 Yes
No audio Omni-dir #02 308.7 10.1 0.000 Yes
No audio Omni-dir #03 268.8 7.3 0.000 Yes
No audio Omni-dir #04 57.3 4.4 0.008 Yes
No audio Omni-dir #05 207.3 13.0 0.000 Yes
No audio Omni-dir #06 532.6 17.8 0.000 Yes
No audio Omni-dir #07 28.5 3.3 0.206 Yes
No audio Omni-dir #08 700.9 18.5 0.000 Yes
No audio Omni-dir #09 189.2 8.1 0.000 Yes
No audio Omni-dir #10 96.5 6.1 0.000 Yes

Bi-dir Omni-dir #01 11.4 1.1 26.026 No
Bi-dir Omni-dir #02 -2.6 -0.3 79.157 No
Bi-dir Omni-dir #03 -10.4 -0.5 61.417 No
Bi-dir Omni-dir #04 13.3 1.0 33.947 No
Bi-dir Omni-dir #05 22.8 1.9 6.624 No
Bi-dir Omni-dir #06 -11.0 -0.6 58.490 No
Bi-dir Omni-dir #07 -7.1 -1.0 31.448 No
Bi-dir Omni-dir #08 10.8 3.0 0.417 Yes
Bi-dir Omni-dir #09 27.1 2.2 3.321 Yes
Bi-dir Omni-dir #10 6.2 1.7 9.562 No

Table 3.2: Two-tailed student T-test results. Each row shows the comparison of a method
pair on one configuration. Column “gain” is the performance gain percentage of method
2 over method 1, and is calculated by dividing the means minus one. Column “Different”
shows whether according to the t-Test the results were statistically different with a 95%
confidence or not.



CHAPTER 3. SOUNDS GOOD: EVALUATION OF AUDIO COMMUNICATION 45

3.6 Discussion

We have shown that using audio communication can increase the performance of a realistic

group task significantly. This can be done even by using simple robots, each equipped with

a speaker and two microphones as a bi-directional sensor, i.e. using one bit of audio signal

direction information. In this task and its implementation there are many different aspects

which could usefully be studied. There are several implementation parameters which can

be changed, potentially affecting the overall performance of the system. Nonetheless, we

believe that these simulation results are a useful predictor of the gross behavior of this

system in the real world.

Due to its physical interaction with the robot’s environment, audio promises to be a

very interesting sensor modality. Future work could explore using frequency information

in ambient and transmitted audio signals, for example to characterize locations by their

“sound”. As an example, our lab, offices and hallway have very different ambient sound

and sound-reflection properties: each can be easily recognized by sound alone. This could

be useful for localization.



Chapter 4

Going to the Real World

The Sounds Good experiment showed how audio could be used to enhance the performance

of a multi-robot system. It was a proof-of-concept and preparation for the extension of this

type of signaling into real-world applications. In the following sections we will discuss some

possible scenarios in which this type of communication can be used.

4.1 Sounds Good in the Real World

After Sounds Good, the obvious extension would be to repeat the same experiment in the

real world and on real robots. In that experiment we assumed that our robots are equipped

with directional audio sensors. Our simulation showed that even a simple bidirectional

sensor configuration can be good enough to increase the performance significantly. Running

this experiment on real robots will be a validation of the simulation results.

The exploration/transportation experiment assumed that the audio sensor can distin-

guish a few message types and their direction information. This has been shown to be

possible either by using microphone arrays [51] to achieve high precision, or even by using a

simple two microphone configuration. PeanutBot1, the audio homing robot built in Cornell

University, uses three microphones to detect the direction of the sound source and move to

that direction. McDowell in [32] showed how acoustic sensors were used in relative position-

ing for navigation of a robot team in an environment where other positioning systems such

as GPS are ineffective.

1http://instruct1.cit.cornell.edu/courses/ee476/FinalProjects/s2007/ai45_hkc2_sbs43/ai45_

hkc2_sbs43/

46



CHAPTER 4. GOING TO THE REAL WORLD 47

Extracting audio direction information is one of the engineering efforts that are needed

to move the Sounds Good experiment from simulation to the real world. Instead we can use

the tools that we already developed in the previous step and use them in a totally different

and new application that would be more significant.

4.2 Audio Communication in Robotics

There have been several studies of audio communication in robotics. Some example appli-

cations that can be changed to use audio communication in a multi-robot configuration are

as follows.

Girod in [15] used acoustic signaling to derive a relative localization method for sensor

nodes spread in an environment. By combining the radio frequency communication and

sound transmission in a sensor network system, he obtained accurate distance information

between the elements.

Østergaard in [36] generated locally-sensible sound gradient from several fixed emergency

alarms. A team of robots each equipped with a single directional microphone solved a multi-

robot-multiple-task allocation problem. They also showed the effectiveness of using multiple

sound frequencies in a noisy environment.

Another possible use of audio is as an added piece of information in self organizing

systems. Holland in [18] and Melhuish in [34] demonstrated use of a biologically inspired

chorusing mechanism in controlling the size of the robot clusters or to form traveling groups

of fixed size.

4.3 Concurrent Computing

Another group of applications which can be fitted to use audio communication are the

algorithms used in concurrent programming and distributed systems. To coordinate among

processes or to implement a concurrent program in a distributed system, message passing

or shared memory should be used [9]. In distributed robotic systems where robots are mobile

agents, communication plays an important role.



CHAPTER 4. GOING TO THE REAL WORLD 48

4.3.1 Mutual Exclusion

One of the classical problems in a distributed system is to achieve mutual exclusion among

multiple homogenous agents without the existence of a central coordinator. A solution to

mutual exclusion can be used to solve many other distributed system problems.

For tasks in a physical world that are shared among multiple robots, avoiding conflicts

and resource allocation is an important problem. Passing through a narrow corridor, getting

access to a single charger or selecting a leader are examples of these kinds of problems.

A popular and easy solution to this class of problems is to solve it through robot’s

interaction with physical objects. For example, the possession of a unique object can be

used to select which robot gets the exclusive access to a lock. This physical fulfillment

of mutual exclusion sometimes can be very expensive and hard to achieve. Robots might

need to fight physically to get the object and they should be equipped with grippers and

other means of picking up the object. Another solution to that problem is to incorporate

communication and use a distributed algorithm for making the decision of who gets the

lock.

4.3.2 Local Mutual Exclusion

One of the properties of the audio based communication is its locality with a reasonable

scale compared to the robot sizes. This property cannot be easily achieved in other types of

communication media. Using locality of audio, some of the classical distributed algorithms

can be implemented spatially. For example in case of mutual exclusion and by using audio

communication robots can achieve a local mutual exclusion. This means that they can

guarantee mutual exclusion over the hearing range of the robots.

An autonomous Multi-Robot system is a good example of a distributed system. Like

any other distributed system if multiple agents want to access a shared resource at the

same time, locks need to be put in place to avoid race conditions. An implementation of

local mutual exclusion for robots can be used in many applications. A general application

is when there are resources spread around the environment at different locations. Even if

identifying and uniquely labeling these resources is not possible for robots, they can use a

local mutual exclusion algorithm to get access to a local resource. Charging with multiple

charging stations spread in the environment is a good sample usage scenario.



CHAPTER 4. GOING TO THE REAL WORLD 49

The same communication based mutual exclusion algorithm can be used to avoid phys-

ical fights and conflicts in many other cases. Entering a narrow corridor, selecting a leader,

forming territories are other examples that can benefit from audio-based local mutual ex-

clusion.

4.3.3 Distributed Coordination

Other distributed methods that are used for coordination and agreement include election,

multi-cast communication and consensus. The ideas used in the solution to the mutual

exclusion problem are also helpful in solving the other problems.

4.4 Final Choice

Because of the novelty of implementing local mutual exclusion and the fact that a biologically

inspired communication medium can be used to solve this distributed system problem, we

decided to focus on that.

4.5 Message Passing Communication

In the Sounds Good experiment, the audio messages passed between robots were simple

messages with a tiny amount of information. But the robots had the signal processing abil-

ity to detect the intensity and direction of the audio messages. In the selected application,

which is to implement an audio-based local mutual exclusion, the messages are more com-

plex and contain more information; thus letting us study the more complicated distributed

algorithms on a multi-robot system. We also chose not to use the direction information or

the audio intensity (as a direct function of source-destination distance) information. This

will decrease the complexity involved with the selection and calibration of sensors and also

avoid dedicating significant computation power for signal processing.

This audio-based message passing system is implemented as a reusable module. In the

next chapter we will discuss the design of this network communication layer for transmission

of data over audio.



Chapter 5

Nava: Audio Communication Layer

In the Persian language navā means melody, tune; a motive; a mode and also

a song. It is also the name of a musical scale in Iranian traditional music [16].

Nava is an implementation of an audio based broadcast network layer. It encodes small

packets of data and broadcasts them using a Carrier Sense Multiple Access with Collision

Avoidance (CSMA-CA) method. It does not have the ability to detect collisions with

perfect reliability but it tries to avoid them. There is a checksum in each packet to detect

corruptions due to noise and possible collisions. It also reports information about the quality

of the received data and the existence of carrier frequencies to the higher layers.

5.1 RTTY Communication

The Nava audio communication layer is mostly based on a package named RTTY version

2.1 written by Jesús Arias1 [1]. It is licensed under the GNU General Public License2. The

original RTTY software is for generation and detection of Radio-Tele-TYpe (RTTY) signals

using a normal sound card. It supports three types of decoding frequency modulated signals:

Morse code, Frequency Shift Keying (FSK) and High-Level Data Link Control (HDLC)

protocol.

In fact, many cheap modems available these days also use a simple technology similar to

RTTY. The hardware part of these modems only provides interfacing with the phone line

1http://www.ele.uva.es/~jesus/rtty/
2http://www.gnu.org/copyleft/gpl.html

50



CHAPTER 5. NAVA: AUDIO COMMUNICATION LAYER 51

Mark

Space
Idle

Start

0 1 2 3 4 5 6 7

Data bits

Stop Start

0 1 2 3 4 5 6 7

Data bits

Stop

Idle

Figure 5.1: Signal levels for two 8N1 bytes sent using RS-232 standard. There are one start
bit, eight bits of data, no parity and one stop bit.

and the ability to transmit and receive analog data over wires. Other than the digital-to-

analog and analog-to-digital conversions most of the modulation and demodulation is done

in software.

5.1.1 Modulation

In Frequency Shift Keying, two fixed frequencies are used for zero and one bits. They are

called MARK and SPACE frequencies. The FSK modulator unit in RTTY sends the byte

stream, byte by byte, using RS-232 standard. For example in 8N1 format, each byte is sent

as a start-bit which is always zero, 8 bits of data and a stop bit that is always one. Zeros

and ones are sent with MARK and SPACE frequencies and an amplitude envelope is used

for smooth transition of frequencies between zero and one. See Figure 5.1.

FSK encoding combined with a Universal Asynchronous Receiver/Transmitter (UART)

can be easily used to send and receive streams of bytes between two points. Sometimes to

have full-duplex communication over a shared medium, four frequencies are used instead

of two. Each side will be assigned to two unique frequencies for zeros and ones. This way

there will be no conflict when both sides are communicating simultaneously.

There are other possible methods for a broadcast based communication using audio.

For example, each robot can use one or more separate unique frequency for communica-

tion. These frequencies can be pre-assigned or selected randomly. By assigning a separate

frequency to each robot, the robots can avoid collisions when communicating.

The problem is that in practice the number of possible frequencies is not unlimited.

Because of the definition of audio communication, we are limited to audio frequency range.

Also the number of frequencies that can be used is limited to a maximum number because of

our constant sampling rate and the fixed bandwidth assigned to each channel. This makes

this method non-scalable unless the underlying protocol can support collisions. If collisions



CHAPTER 5. NAVA: AUDIO COMMUNICATION LAYER 52

Figure 5.2: Block diagram for demodulation in RTTY program. c©Jesús Arias. Used by
permission.

can be handled then this method will have fewer collisions than FSK but instead it will be

more computationally expensive than FSK. In FSK, it is enough to be able to detect the

two main frequencies but detection of multiple frequencies needs more complex operations

such as Discrete Fourier Transform.

To humans, the FSK generated signal sounds similar to normal computer modems or

Fax machines. But if sent with a high bit per second rate and in small chunks of data they

are heard as short chirps.

5.1.2 Demodulation

Figure 5.2 shows the demodulator section of RTTY. In order to decode the FSK encoded

signal, RTTY first uses the sound card to digitize the input signal. This signal is passed

through two parallel band-pass filters. Each band-pass filter is tuned to one of the MARK

and SPACE frequencies. The output power (RMS) of the MARK filter is then subtracted

from the output power of the SPACE filter to achieve the original transmitted stream. To

extract the actual bits and bytes, a digital phase-locked loop (DPLL) and an emulated

UART is used.



CHAPTER 5. NAVA: AUDIO COMMUNICATION LAYER 53

5.2 Broadcast over Audio

5.2.1 Network Layer

The RTTY software was designed to extract the data mostly when there is a single trans-

mitting agent in the environment. To build a shared medium broadcast based system that

allows communication between multi-robots, we used ideas similar to those used in wireless

networks.

For communication between multiple nodes on a shared medium, “Carrier Sense - Mul-

tiple Access” is a good choice. In the CSMA protocol, each node has the ability to sense

the existence of the carrier signal. The existence of the carrier on the shared medium means

that another node is already sending data and thus, the current node transmitter should

avoid sending data. In audio communication using FSK protocol, the detection of any of

the MARK or SPACE frequencies is equivalent to sensing the carrier.

5.2.2 Collisions

The problem with pure CSMA is when two nodes want to transmit at the same time. In

that case both of the nodes will listen on the shared medium for the existence of the carrier

and then it is possible that both start transmitting at the same time. There are methods

for detection of collisions. For example in a wired network, a collision can be detected by

measuring the signal on the wire. If the voltage is higher than the voltage applied to the wire

by a single node, a collision is assumed. This class of methods is referred to as CSMA-CD.

Due to the nature of some media such as air in audio communication, collision detection

is either not possible or very hard to do. In audio communication a node cannot listen while

transmitting because the node’s own transmitted signal will obscure any other signal present

in the air. The reason is that the sound intensity at any given distance from the sound source

follows the inverse-square law. Because of this, in close proximity of the source, the sound

is much more powerful. This is similar to wireless networks such as Ethernet 802.11.

Wang in [56] proposed CSMA/CD-W protocol for multi-robot systems. CSMA/CD-W

uses radio frequency for communication and assumes that there should always be a difference

in transmission start time. In CSMA/CD-W collisions are detected by immediately checking

for the existence of carrier frequencies after the transmission was done. But the ability to

check for the carrier that fast after the transmission end is not easy to achieve and probably



CHAPTER 5. NAVA: AUDIO COMMUNICATION LAYER 54

needs hardware support. Especially for audio, a received sound after transmission end can

be because of unavoidable distance between speaker and microphone, the echo from robot

body or floor, or the delay caused by internal data buffers.

Another possible solution is to try to avoid collisions if possible. This class of protocols

is called CSMA-CA methods. A simple way of avoiding collisions for the transmitter is to

listen for the carrier for a random amount of time and only sending the data when the media

seems to be free for that period. This is the method that is used in our implementation.

5.2.3 Unreliable Broadcast

Without having a collision detection method, we can only achieve an unreliable network

transport layer. Data corruption and data loss may happen because of collisions. Data

corruption can be prevented by adding checksum of data to each packet. Data loss can be

avoided by expecting the receiving nodes to send acknowledgement of the receipt of each

packet.

Because of the nature of audio communication, our system assumptions, the complexity

of handling acknowledge messages and the technical difficulty of message routing between

nodes, we ended up with an unreliable broadcast network. The collision avoidance tries to

keep the network reliable but it does not guarantee it. As a work-around the network layer

also provides the information about carrier existence, incomplete packets and noise data to

the application layer. Later in Chapter 6 and Chapter 7 we will discuss how the carrier

sense information will be used to implement applications on an unreliable network.

5.2.4 Implementation

The Nava audio communication layer is implemented as a state based model. The state

machine describing the communication layer is shown in Figure 5.3. The states in that

machine are as follows:

Calibration State

This is the initial state. It sets all the parameters to their initial values. One of these

parameters is a threshold on the demodulator’s output level. This threshold separates

silence from carrier existence.



CHAPTER 5. NAVA: AUDIO COMMUNICATION LAYER 55

Calibration

Waiting

Sending Deaf Waiting

Receiving

Timeout & Data in Queue

Carrier Sense

Sent

Timeout

Received

Queue Empty

Figure 5.3: The state machine implementing the Nava audio communication layer

The threshold can be either a pre-assigned value or it can be calibrated on startup. In

the latter case the calibration state listens for four seconds of silence and sets the threshold

based on that.

After the calibration is done, the system goes to the waiting state.

Waiting State

In this state, Nava listens on the air for the existence of carrier. Carrier is detected by

measuring the output power of the demodulator over the equivalent of 1
16 of a single bit

transmission time. The value is compared against the silence threshold to detect the carrier

existence. The time to search for carrier should be long enough to compensate for the

possible noise in the environment and on the other hand it should be short enough not to

miss a large portion of a bit. All the timing units in our implementation are based on this
1
16 of a bit time. This means that if the bit rate is increased all the system will perform

faster accordingly.

If the carrier is detected, the system immediately goes to the receiving state. If no

carrier is detected after a random time and if there is data in the queue ready to be sent,

the system goes to the sending state.

Sending State

The Nava network layer sends data in packets. Before sending a packet, first a break signal

is sent. A “break” is a fixed level signal for longer than a character length. In our network



CHAPTER 5. NAVA: AUDIO COMMUNICATION LAYER 56

0 7 8 15

Start byte:
0x55

32-bit data

CCITT...

...CRC

Figure 5.4: Nava packet format

layer, 20 bits of zero and then 20 bits of one form a break signal. This break level will make

it easier for the receiving node to synchronize to the data stream.

In Nava, a data packet is a 7 byte packet. It contains one header byte with a fixed

value (0x55), four bytes of data, and two trailing bytes of checksum. The checksum is in the

standard CCITT format [46]. An illustration of packet format can be seen in Figure 5.4.

The bytes are send in 8N1 format, which means first there is one start bit, then eight

bits of data and then on stop bit. As there is already a checksum at the end of the packet

there is not need for parity bits. The time for sending each byte is equal to the time for

sending 10 bits of data.

The total time to send a packet is the time to send 40 bits of break signal plus 7 bytes

of data which equals to the time to send 40 + 10× 7 = 110 bits. At 300bps each packet will

take near 367ms to be sent.

After a packet is sent, the system goes to the Deaf waiting state.

Deaf Waiting State

Every time an audio message transmission through the speaker is finished, an echo of it can

be heard by the system after a short while. This is due to multiple factors causing a delay

in the system. Internal buffers used in our system and the unavoidable physical distance

between the speaker and the microphone and the echo from the robot body are some of

these factors. To avoid this to be interpreted as a wrong carrier signal, right after sending

a packet, the system goes to a deaf state.

In the “deaf waiting” state the audio signals will be discarded for a short fixed period of

time. This fixed time is set to be shortest possible time that is larger than the echo time.

After this period was over, the system goes back to the waiting state.



CHAPTER 5. NAVA: AUDIO COMMUNICATION LAYER 57

The fixed waiting time in this state should be smaller the time to send a packet. This

will guarantee that an existing carrier will not be missed and thus keeping the integrity of

carrier sense that is needed for the experiment that will be discussed in Chapter 7.

Receiving State

The system enters the receiving state when it senses the carrier in the waiting state. After

entering the receiving state the system immediately starts decoding the received data and

parsing the data packet. Other than decoding the data bytes, the UART module in RTTY

also checks the integrity of bytes receive based on the start bit and stop bit values.

If the first received byte is not the header byte (0x55), the UART found an error in

receiving the data or the checksum does not match the data, detected noise is reported. Re-

porting the noise information allows the higher application layer to know of carrier existence

even in the case when no meaningful data is received.

The received data can be one of the following:

• Data packet

• Noise

– Zero byte noise: The UART could not decode any single byte.

– One byte noise: The start byte is wrong.

– Seven byte noise: Wrong checksum or corrupted data inside the packet.

Nava also reports the quality information which might be helpful in getting the informa-

tion about the environment and to get an approximate node distance measure. The quality

is calculated from the sum of the absolute values of the MARK and SPACE filters.

5.3 Player Driver

Nava is implemented as a plug-in driver for Player which can be used on any computer

running Linux with a sound card. It uses small amount of CPU power because of the

simple demodulation algorithm that it uses. It can be accessed from any robot controller

through the Player’s Opaque interface. The behavior of this communication module can be

simulated using the audio model that was discussed in Chapter 2. The audio model can

simulate message collisions as well.



Chapter 6

Mutual Exclusion for Robots

6.1 Mutual Exclusion

Mutual exclusion algorithms are used to avoid multiple agents accessing a single shared

resource at the same time. A mutual exclusion algorithm should guarantee that the capacity

of the protected resource is never exceeded. It should avoid starvation where a process never

gets to access the resource thus satisfying fairness. Deadlocks should also be avoided in which

two or more agents wait for the others to release a resource before releasing their captured

resource.

On a single computer running multi-threaded processes, mutual exclusion can be achieved

using a shared semaphore between threads. By atomic increments and decrements of this

semaphore each thread can get safe access to the protected resource [42].

6.2 Mutual Exclusion for Robots

The following sections describe some of the methods that can be used for mutual exclusion

in multi-robot systems. In these algorithms we assume the robots to be autonomous and

running software on-board. We also assume that all robots are honest agents working

towards the success of the group.

6.2.1 Physical Object

One way to achieve mutual exclusion in robotics is to satisfy it through physical properties

of objects. For example the possession of a single object can decide which robot gets the

58



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 59

Server
Grant

Request

Figure 6.1: Single server mutual exclusion: a single central authority grants lock to the
requesting clients in order of their request times.

lock. The robots have to compete with each other to get that object.

An applicable field for this method is in robotic soccer and its competitions the RoboCup1.

In a soccer game, the robot that carries the ball can take the leadership of the team. A

similar approach can be implemented using other physical attributes such as docking on a

home base that only fits one single robot. This method is dependent on the application

and sometimes may be costly because of its need for extra mechanical equipment such as

grippers.

6.2.2 Lock Assignment Authority

One solution to the distributed mutual exclusion problem is to have a single authority that

manages other agents’ access to the shared resource. The authority will use the same concept

of a single computer lock such as a semaphore to store the current state and to authorize a

single agent in case the lock was available. See Figure 6.1 for an illustration of this method.

For the central authority, an implementation for the server could be based on knowing

the current lock owner and also the order in which the lock requests from the requesting

nodes were received. The server then grants the clients in the same order whenever the

lock is available. This is similar to Lamport’s bakery algorithm [28], in which each thread

1http://www.robocup.org



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 60

n1

n2• nn

nn−1n3

n4

Figure 6.2: Achieving mutual exclusion with token passing. The node which has the token
can grab the lock.

is assigned a number at entrance like it is done in a real bakery. This sequence number can

also be replaced with a time stamp of sufficient resolution.

The problem with this method is that one of the agents, that take the role of the

authority, should be different from others. If all the agents are similar they all need to first

negotiate and select one agent as the authority. This election problem itself is a distributed

systems problem.

6.2.3 Token Passing in a Ring

Passing a token in a ring is one of the simplest ways to achieve mutual exclusion. It needs

all the agents to be ordered and each agent knowing its next agent in the ring order. The

possession of a virtual token specifies who can access the lock. If the node that has the

token does not need the lock, it releases it to the next node.

The need for all agents to be ordered in a ring and each agent knowing the next one

makes this method hard to implement in a robotic system. In case scalability while running

is needed, there should be mechanisms in place to add and remove nodes from the system

and inform the affected agents about the new configuration. The other major problem is

the creation of the token and the guarantee of it being the only token in the system. If all

robots are homogenous the token creation needs to be done through an election algorithm.

Still this algorithm can be simplified to be useful in some applications, for example the



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 61

first token can simply be created by a human when the experiment starts or through other

similar means.

6.2.4 Logical Clocks

In a distributed system with nodes being able to communicate with each other, a desired

distributed mutual exclusion algorithm would be a system where the nodes pass messages

to each other in case of a lock request. Then each node individually decides whether it

can access the lock or not. This individual decision should be guaranteed to satisfy mutual

exclusion properties and should not conflict with other nodes’ decisions.

If each agent in the distributed system can follow the same decision process as a central

authority and make the same decision then the mutual exclusion can be achieved without

a need for the central server. The central authority needed to identify each node. It also

needed a numbering system to sequence the client requests based on the request arrival

time.

For the robots each separately following the decision process of a virtual authority, iden-

tifying other distributed agents is straightforward from the message headers. For assigning

sequence numbers to requests, Lamport logical clocks [29] can be used.

Lamport Logical Clock

A single process running on one machine can order events based on its own clock. But in

a distributed system, where the events are the messages passing between agents, ordering

can be done with messages labeled with the time-stamp of the transmitter. The clock on all

agents should also be synchronized between all agents. But synchronizing clocks perfectly

is not possible [29]. There is also the delay between when the message is sent and when it

is received which is not always a fixed value. This causes ambiguity even if the clocks were

synchronized.

Lamport proposed logical clocks to quantize the concept of an event happening before

other events in a distributed system. The idea is based on the facts that [9]:

• The order of the messages from a single agent is the same order that agent generates

them and numbers them.

• For messages passed between agents, the event of sending message happened before the

event of receiving the message.



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 62

p1

p2

p3

1 2

3 4 5

1 2 5

(2)

(4)(2)

Figure 6.3: Lamport logical clocks use happened-before relation between events to time-
stamp them.

This “happened before” relation, often denoted by: →, provides us with a partial order-

ing of the events. Happened before can be described with these rules:

• If two events a and b are both from a single agent and a is generated before b, then

a→ b.

• If a is the event of a sending a message from an agent and b is the event of receiving

the same message by another agent, then a→ b.

• The happened-before relation of events is transitive. If a→ b and b→ c, then a→ c.

Each agent in the distributed system keeps its own logical clock and sets it based on the

happened-before relation:

1. Each agent increments the logical clock before any event happening in that agent.

2. Each message sent from an agent is time-stamped with its logical clock.

3. On receiving a message, the agent updates its own clock to the maximum of their

own value and the time-stamp of the received message. According to the first rule the

clock will also be incremented by one.

See Figure 6.3 to see how messages are time-stamped and how the logical clock is updated

by each agent.



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 63

n1

n2

n3

Request
(7, n2)

Request
(3, n3)

Request
(7, n2)

Request
(3, n3)

(a)

n1

n2

n3

Reply
(12, n1)

Reply
(9, n1)

Reply
(8, n2)

•

(b)

Figure 6.4: The Ricart-Agrawala algorithm for mutual exclusion uses messages that are
time-stamped with Lamport clock and the node id: (Ti, i). (a) n2 and n3 request for lock.
(b) n1 replies to both. n2 replies to n3 but n2 defers the reply and grabs the lock.

Logical clocks only provide a partial-order relation. To achieve total-order among the

events, each message can be labeled with both a time-stamp and the agent’s identifier. This

identifier can be used to break the symmetry in case of a tie of logical time stamps. As

we said before, each agent’s identifier is guaranteed to be unique and there is a total order

relation between them. The (Ti, i) pair of “time stamp - node id” is now a total order.

We say that (Ti, i) < (Tj , j), if and only if







Ti < Tj, or

Ti = Tj and i < j

Ricart-Agrawala algorithm

Ricart in [38] proposed a mutual exclusion algorithm for computer networks based on Lam-

port logical clocks and a total order. The Ricart-Agrawala algorithm works by each agent

requesting for access to the lock and then waiting for all other agents in the system to

approve the request. Each agent in the system can be in one of the following three states

of the lock being available, requesting the lock, or lock held.

An agent requests the lock by broadcasting a request message, time-stamped with the



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 64

logical time Ti and its unique identifier i. Upon reception of this request, all other agents

update their logical clock and then take one of the following actions:

• If the agent does not already have the lock (“available” state), it immediately sends a

reply message.

• If the agent already has the lock (“held” state), it will defer the request until when it

releases the lock.

• If the agent is requesting the lock too (“requesting” state), it compares the request

time and id pair with its own time and id:

– If (Ti, i) < (Tj , j), it sends a replay message.

– If (Ti, i) > (Tj , j), it defers the request until its own request is satisfied.

The requesting agent will get the lock when it received replies from all other agents in

the system. Because of that, each agent should have the knowledge of the total number

of agents in the system. Figure 6.4 shows a sample scenario of distributed nodes solving

mutual exclusion.

6.3 Mutual Exclusion over Audio

Because of the nature of audio its range is limited and it can be blocked by obstacles. That

is the reason why mutual exclusion over audio is only guaranteed over the audio range.

But the network layer we implemented in Chapter 5 is still unreliable over that range.

The communication module tries to avoid collisions but it does not guarantee it. Also

because of the noise in the environment messages may get corrupted.

To solve this we added some assumptions to our system and also used the features

provided by the communication layer. These assumptions are

• The mutual exclusion is only guaranteed over the minimum range of all speakers and

microphones in the system.

• As implied by the previous assumption, we assume that there are no faulty microphone

or speaker.

• The robots do not move if they are requesting the lock or already hold the lock.



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 65

The communication module provides us with carrier existence information. Carrier de-

tection in that module is defined as the existence of audio frequencies in the communication

range. Because of our assumptions and this feature we can detect all the transmissions from

other robots even if the message was corrupt.

We designed our system and set our assumptions so that our communication module can

capture all of the messages: either as a correctly received packet that is checked for integrity

using a checksum or as an incomplete message or as a noise through carrier detection

mechanism.

6.3.1 Our Algorithm

In Ricart-Agrawala algorithm the idea was to get an acknowledgement from every other

robot before holding the lock. Implementing that algorithm over an unreliable network

where the number of robots can also change during the experiment is not easy. It requires

implementing buffers and a system of acknowledge messages to make the communication

reliable first. And also a system of keeping track of the number of robots through other

means.

Here we suggest an approach which in contrast to Ricart-Agrawala, holding and request-

ing the lock is shown by sending messages and the requesting robot will wait until there is

no other robot sending messages before holding the lock. The basic idea is that the robot

will acquire the lock only after it does not hear anything for a fixed amount of time. It is

the goal of the requesting robot to transmit its request to other robots and convince them

to stay silent.

Robots will use the same method of achieving a total order to decide which agent acquires

the lock. If a robot decided that it is still not its turn to get the lock, it stays silent; letting

another robot to hold the lock. When a robot is requesting the lock, it first checks to see

if there is any lock held message or request message received recently. If there is a lock

held message received it will defer its requests until a further time. If there is another lock

request message, the robot compares the (Ti, i) pair attached to the message data in relation

to its own Logical clock. If it found out that the other robot has priority over itself, this

robot will defer its request long enough to let the robot get the lock. If none of the above

cases were true, the robot starts send the request messages. If the environment stayed quiet

for a predefined amount of time, the robot will acquire the lock.

Because we are using an unreliable network, the messages may be received as corrupted.



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 66

Action / Event Ricart-Agrawala Audio-Based

Request by Broadcasting Broadcasting
Grab lock when All others acknowledged Others were silent

Prevent others by Deferring the reply Announcing frequently
Grant the lock by Replying to the requests Staying silent

Table 6.1: Actions and events for agents requesting the lock in the audio-based mutual
exclusion method in comparison to Ricart-Agrawala algorithm.

Though, we assumed that the carrier detection feature of the communication module detects

every message transmission even if not received successfully. It still might detect noises in

the environment as carrier too.

If carrier existence is sensed during the request period but the data could not be decoded

into a meaningful packet, the robot will restart measuring the time before holding the lock

again. The reason is that the received noise could be the message from another robot that is

prior to the first robot. It could also be that the robot itself has priority so it will continue

to broadcast request messages.

6.3.2 Analysis

Mutual Exclusion Requirements

A valid implementation of mutual exclusion algorithm has some requirements. Safety of

the lock, meaning that it is not possible for more than one agent at a time to access a lock,

is one of the required lock properties. The other one is liveness which requires that any

agent wanting the lock eventually gets access to it.

In our implementation of audio-based mutual exclusion, if the communication was always

reliable and all the messages within the audio range were transmitted successfully, the

lock requirements would always be satisfied over the local range of audio. The reason

is that with a reliable communication the audio-based method is similar to the Ricart-

Agrawala algorithm. Knowing that messages will reliably be transmitted between agents,

both “safety” and “liveness” are guaranteed by the use of logical time-stamps on the request

messages which provides a total ordering of the requests. This total order also makes these

methods “deadlock free” and “fair”. Table 6.1 compares audio-based method with Ricart-

Agrawala algorithm.



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 67

But the Nava communication module is an unreliable communication channel. The

communication module is unreliable because message transmissions may get corrupted and

also messages may get lost. As long as there is no collision, we assume that all of the

corrupted messages will be detected for having a wrong checksum and thus they will be

marked as noise/carrier existence. A noise which can be a corrupted message from another

robot delays getting the lock and thus satisfies the safeness requirement.

To avoid collisions, Nava first listens for other robots before sending a message. But

there is still a chance of collision if more than one robot starts sending messages at the same

time. In our implementation discussed in Chapter 7, we improved this by resending request

messages several times. By sending multiple request messages before getting the lock the

chance of all the transmissions colliding will be decreased exponentially. All the repeated

messages are marked with the same logical time as when the first request message is sent.

The robot increments its own logical clock every time it sends a message. But this still does

not guarantee safety.

One of the advantages of using audio communication in the local mutual exclusion

method is the scalability provided due to physical limitations. The maximum number of

robots communicating with each other is not related to the size of the whole world nor the

total number of robots. Because of the locality of audio, the maximum number of robots

that are with the communication range of each other is dependent on the physical size of

these robots and the maximum number of them that can fit in the audio hearing range. By

controlling system parameters, this physically imposed limit can also be changed. Changing

the sound volume, changes the range over which mutual exclusion is performed and thus

limits the maximum number robots taking part in a mutual exclusion communication. Refer

to Section 5.2.4 for a better description of communication module parameters.

The probability of two robots’ transmissions causing a collision can be calculated from

the system properties. The programmer also has control over the some of the system

parameters. We show that it is possible to set these parameters so that the chance of the

collisions disrupting the mutual exclusion safeness to be below a desired probability.

The collision probability itself is dependent on the transmission probability function

(a uniform random between one to ten seconds in the Nava communication module), the

sampling rate ( 1
16 of a bit in Nava), message transmission time (367ms in Nava) and the time

for a message to arrive from one robot to another robot (transmission to reception delay).

All of the previous numbers can be approximately measured and thus an upper bound on



CHAPTER 6. MUTUAL EXCLUSION FOR ROBOTS 68

the collision probability of robots transmitting at the same time can be calculated.

We assume that the probability of message collision for two robots is p2 and pr for r

robots. Increasing the number of robots increase the chance of collisions so if r > 2, pr > p2.

The collision avoidance mechanism in Nava tries to make p as small as it can.

The user controllable parameters in the system are the sound level and the number of

requests before getting the lock. By setting the sound level to a specific value the maximum

number of robots in the audio hearing range can be set to a maximum of r robots. By

sending n requests before getting the lock, the probability of all request messages colliding

will drop to (pr)
n. Obviously pr < 1 as it is a probability. (pr)

n is the chance of mutual

exclusion failing even after n requests.

By increasing n the number of requests before getting the lock, we can set the (pr)
n

probability of mutual exclusion to be below any desired ρ value, as n = logpr
(ρ). This

shows how although the audio-based method cannot completely guarantee the safeness in

the case of an unreliable network, the probability of it failing can be limited to any desired

value by setting the system parameters.

Note that using Nava we cannot logically guarantee mutual exclusion. Instead we provide

an approximation of mutual exclusion with some probability. To fully fix the collision issue

it is possible to implement a collision detection system similar to CSMA/CD-W [56] protocol

or a reliable transmission protocol using “acknowledge messages”.

Excessive Noise Effects

To achieve local mutual exclusion, the proposed algorithm restarts the timer whenever it

senses carrier existence that can be either noise or another robot’s transmission. The noisier

the environment it will take longer for the robots to negotiate and thus delay getting the

lock. In the worst case it is also possible that the noise completely blocks the communication.

This problem can be worked around by changing the frequencies used or the bit transfer

rate of the communication module. The underlying modulation code can also be enhanced

using more error-resistant techniques.



Chapter 7

Local Mutual Exclusion

Demonstration

In this chapter we discuss the implementation details of the mutual exclusion algorithm.

Later in Section 7.2 we demonstrate the use of the local mutual exclusion method in a

charging application.

7.1 Implementation

The local mutual exclusion is implemented as a Player client. This allows the controller

to be tested both in simulation connected to the Stage simulator and also on real robot

hardware.

The Nava network layer can transmit four-byte message packets. Each message contains

one byte for robot id and one byte for message type, that is either a lock request message

or a lock held announcement. Two more bytes are used for storing the Lamport time. You

can see an illustration of the message packet in Figure 7.1.

0 7 8 15 16 23 24 31

Robot Id#

Message Type:
{

Request

Lock
Lamport time

Figure 7.1: The format of four-byte audio message of mutual exclusion experiment.

69



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 70

The logical clock is initialized to zero. It is incremented on every message that is sent or

every noise that is received. For every data message received, the logical clock is set to one

plus the maximum of the current local clock and the message time-stamp. When resending

the same request, the time field of the message is the time of the first request message. But

the internal logical clock is incremented because sending is also considered an event.

Each agent records its state of being Released when it does not need the lock, Wanted

when it requests the lock, or Held when it already has the lock.

In the “Released” state, the robot does not need the lock. In this state, the controller

does not transmit any audio messages. It will only update its logical lock based on the

received messages.

When the lock is held, the controller frequently announces that with a message of the

type “Lock”. This will prevent any another robot in that region from obtaining the lock.

The robot enters the “Wanted” state when the application requests it. This happens

when the application needs access to a shared resource. When the robot enters the “Wanted”

state, it stores the Lamport clock as the request time in Ti and starts a count-down timer

that is initialized to fixed tgrab seconds. This timer runs on real-time clock not the logical

clock.

The robot sends multiple messages of the type “request” every trequest seconds before

the count-down timer reaches zero. During this period any received sound, no matter if it

is a message packet or just noise, will force the count-down timer to restart from the tgrab

again. When the timer reaches zero, it shows that there was not any sound while timer was

running and so it is safe for the robot to go into the lock “Held” state.

While in the “Wanted” state if the robot hears a message indicating that there is another

robot requesting the lock, it compares the pair of request time and robot number (Ti, i) with

the received message’s (Tj , j). If the total order of the pairs shows that the other robot is

prior to the current robot, the lock “request” message will be deferred to a later time. It

will be deferred until at least tgrab seconds later. Deferring lets the other robot get the

lock. The current robot also sets the lock timer to tgrab seconds after when the first request

message will be sent. This is for the robot itself to avoid getting the lock without sending

any requests while in the silent mode.

A pseudo-code implementation of the local mutual exclusion algorithm is described in

Program 7.2. The constants, global variable and functions needed by that pseudo-code are

defined in Program 7.1. The states and transitions of this implementation are illustrated in



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 71

the finite state machine of Figure 7.2.

Normally the lock announce time (tlock) is set to be shorter than the time between

requests (trequest). The reason is that for a robot that is in the lock “Held” state it is

more important to deliver its lock held message to other robots rather than receiving their

messages. But a robot in the lock “Wanted” state should be try to deliver its request and

receive other robots requests to make a fair decision. The tgrab lock should also be long

enough for receiving multiple lock requests and lock held messages.

7.2 Application: Charging

In our Autonomy Lab, one of our goals is to build self-maintaining robots. A robot that

can recharge itself when needed, can maintain its autonomy for a long period [60]. Power

for a self-maintaining robot is a valuable resource.

As a sample application for the local mutual exclusion algorithm which is also in the

direction of the research in our lab, we demonstrate a multi-robot exploration, conflict

resolution and charging application. In this task, we have a large environment with chargers

spread randomly around the world. Chargers are marked so that they are recognizable for

robots but they are all similar to each other and robots cannot distinguish between different

chargers. This is similar to having color markers of a specific color on each charger.

The robots randomly explore the world while doing their normal duty until they need a

recharge. Then they will start searching to find a charger. Because there are more robots

than the number of chargers in the world, in some cases multiple robots try to recharge

themselves at the same time. Instead of physically fighting to access the charger, here the

robots use audio based communication and a local mutual exclusion algorithm to decide

which robot can use the charger first.

When a robot finds the charger it stops at a safe distance and starts sending lock

request messages. After acquiring the lock the robot moves forward to the charger and

starts charging. When done, the robot releases the lock and moves away, letting the other

robots access the charger.

The system architecture implementing the charging application both in simulation and

in real-world is illustrated in Figure 7.3. As we said before the same controller program

runs in both simulation and in real-world.



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 72

global































































i← (unique random) // robot id
logical clock ← 0 // logical clock
state← RELEASED // current robot state
Ti // request’s logical time-stamp
transmit timer // count-down timer for transmission
lock grab timer // count-down timer for getting the lock
grab time← 40s // constant: time to get the lock (tgrab)
request time← 15s // constant: time to send request message (trequest)
announce time← 10s // constant: time to send lock message (tlock)

// Application Interface
procedure RequestLock()


























state←WANTED
Ti ← logical clock

transmit timer ← request time

lock grab timer ← grab time

wait until state = HELD

procedure ReleaseLock()
state← RELEASED

// Internal functions definitions
procedure UpdateLogicalClock(Type, Ti)










if ( not Type = Noise) and (Ti > logical clock)
then logical clock ← Ti

logical clock ← logical clock + 1

procedure PostponeGrab()
lock grab timer ← grab time

procedure PostponeRequest()
{

transmit timer ← grab time + request time

lock grab timer ← transmit timer + grab time

procedure ScheduleRequest()
if transmit timer > request time

then transmit timer ← request time

procedure UpdateTimer(t)
t← t−One Second

Program 7.1: The variables and functions needed for the implementation of the local mutual
algorithm shown in Program 7.2.



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 73

// Main Program
main
while true

do



























































































































































































































































if Nava MessageReceived()

then



























































































(Type, Tj , j)← Nava ReceiveMessage()
UpdateLogicalClock(Type, Tj)
if state = WANTED

then































































PostponeGrab()
if Type = Lock

then











// Another robot has the lock
// Continue requesting
ScheduleRequest()

if Type = Request and (Ti, i) > (Tj , j)
then PostponeRequest()

if Type = Noise
then // Do nothing.

if state = WANTED

then



















UpdateTimer(lock grab timer)
if lock grab timer = 0

then

{

state← HELD
transmit timer ← announce time

// transmit messages
if state = WANTED

then











UpdateTimer(transmit timer)
Nava TransmitMessage(i,Request, Ti)
transmit timer ← 0

if state = HELD

then











UpdateTimer(transmit timer)
Nava TransmitMessage(i,Lock, logical clock)
transmit timer ← 0

Program 7.2: The pseudo-code implementation of the local mutual exclusion alogrithm.
The global variables and the functions need by this algorithm are defined in Program 7.1



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 74

Released

Wanted
Start Timer

Application:
Request Lock

Message:
Noise/Lock/
Request> (Ti, i)

Silent
Start Timer

Message:
Request< (Ti, i)

Timeout
Message:

Lock

Message:
Request< (Ti, i)

Held
Timeout

Message:
Noise/Request

Application:
Release Lock

Error!

Message:
Lock

Figure 7.2: The state machine describing the possible states of the local mutual exclusion
method. The text under the line inside the states is the action that is performed when
entering a state. There are two separate timers to Wanted and Silent states.



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 75

Player

Stage

Audio
Model

Program

Program

Program

Program

(a)

Program

Program

Program

Program

Player

Player

Player

Player

Nava

Nava

Nava

Nava

(b)

Figure 7.3: System architecture implementing the charging application. The robot controller
programs are similar software running on each robot running both the navigation behaviors
plus the mutual exclusion algorithm (a) in simulation (b) in real-world.

7.2.1 Simulation

Using Stage and the audio model discussed in Chapter 2, we demonstrated the charging

task in simulation. Running the charging application in simulation lets us validate the

implementation and also to test different scenarios such as large number of robots. Figure 7.4

shows screen-shots of the charging application running in simulation.

In this simulation, each robot controller waits for 40 seconds of silence before getting the

lock. The time between lock announcements is a Gaussian random of mean of 10 seconds

and standard deviation of 1.0. The time between lock requests was a Gaussian random of

mean 15 seconds and standard deviation of 2.0.

Figure 7.5, shows the messages logged from two simulation trials. These simulation runs

are very similar to the ideal case where there is no noise in the system. In Figure 7.5(a),

only a single robot wants to access the charger. It enters the “Wanted” state at t = 3.3

seconds and starts sending the requests nearly every 15 seconds. The first one is sent at

t = 14.0. Finally the robot grabs that lock at t = 43.3, forty seconds after it entered the

“Wanted” state. After that it sends the lock announcements every 10 seconds until t = 99.8

when it releases the lock.

In Figure 7.5(b), three robots communicate for exclusive access to a single charger.

In that trial, two robots: robot #11 and robot #30 enter the “Wanted” state soon after

the experiment started. Both robots’ logical request times are set to zero because they

have not received any messages before. Robot #30 receives the request message (0, R11)

and compares it to its own request time: (0, R30). According to the total order rules



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 76

(a) (b)

Figure 7.4: Charging application using mutual exclusion in simulation. (a) Two robots
communicating to access the charger. (b) A robot is charging while two other robots are
waiting for the access.

Robot Id Request tuple Time granted

Robot #11 (0, R11) 44.6s
Robot #30 (0, R30) 105.5s
Robot #212 (2, R212) 171.6s

Table 7.1: The request pair and the time lock is granted for the three robots of the simulation
trial depicted in Figure 7.5(b).

(Section 6.2.4): (0, 11) < (0, 30), thus robot #30 will stay silent for a maximum of forty

seconds. This lets the robot #11 to finally get the lock at t = 44.6.

The third robot, robot #212 enters “Wanted” state at t = 32.8 when it already received

two messages and so its request Lamport time is 2. It only gets the lock after both robot

#11 and robot #30 get and then release the lock:

(0, 11) < (0, 30) < (2, 212)

The robots are granted lock in the order of their requests. The “request time-robot id”

pair and the time lock was granted are shown for each robot in Table 7.1.



C
H

A
P

T
E

R
7
.

L
O

C
A

L
M

U
T

U
A

L
E

X
C

L
U

S
IO

N
D

E
M

O
N

S
T

R
A
T

IO
N

77

Time (s):
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Robot 205:

(Req,

0,

R205)

[1]

(Req,

0,

R205)

[2]

(Req,

0,

R205)

[3]

(Lock,

4,

R205)

[4]

(Lock,

5,

R205)

[5]

(Lock,

6,

R205)

[6]

(Lock,

7,

R205)

[7]

(Lock,

8,

R205)

[8]

(a)

Time (s):
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Robot 11:

(Req,

0,

R11)

[1]

(Req,

0,

R11)

[2] [3]

(Lock,

4,

R11)

[4] [5]

(Lock,

6,

R11)

[6] [7] [8] [9]

(Req,

7,

R11)

[12][13] [14] [15] [16] [18]

(Req,

7,

R11)

[19]

(Req,

7,

R11)

[20]

Robot 30:
[1] [2] [3] [4] [6] [7]

(Req,

0,

R30)

[8]

(Req,

0,

R30)

[9]

(Lock,

10,

R30)

[10] [11][12] [13] [14] [15] [18] [19] [20]

Robot 212:
[1] [2]

(Req,

2,

R212)

[3] [4]

(Req,

2,

R212)

[6] [7] [8] [9] [10] [12]

(Req,

2,

R212)

[13]

(Req,

2,

R212)

[14]

(Req,

2,

R212)

[15]

(Lock,

16,

R212)

[16]

(Lock,

17,

R212)

[17] [18] [19]

(b)

Figure 7.5: The transmitted messages for mutual exclusion algorithm logged from a simulation run similar to Figure 7.4.
↓ specifies a sent message in (Type, Ti, i) format. ↑ is a receive event. The numbers in brackets are logical clocks. Thin
lines are when the robot is requesting the lock and thick is when it holds the lock. Dashes lines are when the robot is
silent. (a) Only one robot is requesting the lock. (b) Three robots negotiate to get the lock.



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 78

Figure 7.6: iRobot Create Programmable Robot.

7.2.2 Real-World Demonstration

System

For real-world demonstration we used Create robots manufactured by iRobot. Figure 7.6

shows a Create robot. Create is a programmable robot that is based on the Roomba robotic

vacuum cleaner but without the vacuum hardware. The original Roomba vacuum cleaner

has sold over 2 millions units since its introduction in 2002. Tribelhorn in [48] showed how

Roomba can be used as a low-cost resource for robotics research and education.

The Create robot is equipped with multiple sensors [20]. On the front it has a bumper

with a two bit state showing the right and/or the left side of the robot bumping into

an obstacle. Cliff sensors on the bottom of the robot prevent it from falling and a single

short-range IR sensor on the front-right let the robot perform right wall following algorithm.

Each robot has an omni-directional IR receiver. Robot accessories such as remote controller,

Virtual Wall and Home Base can communicate with robot with this IR sensor.

Using a rechargeable battery in the Create robot, the robot can monitor battery voltage,

current, temperature and charging state. The robot can recharge itself by docking into the

Home Base. The Home Base sends one omni-directional and two directional IR beams. The

directional beams are used to guide the robot for docking. See Figure 7.7.

We equipped each of our robots with a Gumstix1 single board computer. This 8cm×2cm

gum stick sized computer has an ARM based processor and runs Linux. We used a Connex

1http://www.gumstix.com/



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 79

Figure 7.7: Home Base IR beams

400xm motherboard running at 400 MHz and has 16MB of flash and 32MB of RAM. Each

of the boards is also attached to a Wifistix for wireless communication and a Roboaudio-TH

for stereo sound input/output and also an Atmel ATmega128 micro-controller. Figure 7.8

is a picture of the baseboard prototype.

The robot runs Player and the controller code onboard. Player already has a driver for

the Create robot and the Nava module is used as a plug-in driver to Player for transmitting

audio messages.

Demonstration

We run the charging trial with three robots. Figure 7.9 shows three robots communicating

before one of them gets the charger. The MARK and SPACE frequencies are set to 2300Hz

and 3700Hz respectively and the data-rate is 300bps.

The parameters set to be similar to the simulation. Each robot waits for 40 seconds of

silence before getting the lock. The time between lock announcements is a Gaussian random

of mean of 10 seconds and standard deviation of 1.0. The time between lock requests was

a Gaussian random of mean 15 seconds and standard deviation of 2.0.

In the single robot-single charger configuration and in a quiet environment the robot

will get access to charger in 40 seconds most of the time. With two to three robots often the

first robot can acquire the lock in a 1-2 minutes time. The greater the number of robots,

the harder it becomes to communicate correctly and convince all the other robots to stay

silent.

Figure 7.10 illustrates the messages passed between three robots logged from a real run.

The first trial with one robot shown in Figure 7.10(a) is very similar to the simulation



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 80

Figure 7.8: Gumstix, Wifistix, Roboaudio-TH, Microphone and Speaker.

Figure 7.9: iRobot Create robots communicate to decide which one gets access to the
charger.



C
H

A
P

T
E

R
7
.

L
O

C
A

L
M

U
T

U
A

L
E

X
C

L
U

S
IO

N
D

E
M

O
N

S
T

R
A
T

IO
N

81

Time:
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Robot 234:

(Req,

0,

R234)

[1]

(Req,

0,

R234)

[3]

(Req,

0,

R234)

[4]

(Lock,

5,

R234)

[5]

(Lock,

6,

R234)

[6]

(Lock,

7,

R234)

[7]

(Lock,

9,

R234)

[9]

(Lock,

10,

R234)

[10]

(Lock,

11,

R234)

[11]

(a)

Time:
0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220

Robot 62:

(Req,

0,

R62)

[1] [3]

(Req,

0,

R62)

[5]

(Req,

0,

R62)

[6]

(Req,

0,

R62)

[7]

(Lock,

8,

R62)

[8]

(Lock,

9,

R62)

[9] [11][13] [17] [19] [22] [25]

(Req,

17,

R62)

[30] [32] [35] [45]

Robot 113:
[2] [7] [10] [12] [15] [18]

(Req,

8,

R113)

[19][21]

(Req,

8,

R113)

[35] [37]

(Req,

8,

R113)

[38]

(Req,

8,

R113)

[39]

(Req,

8,

R113)

[40]

(Lock,

41,

R113)

[41]

(Lock,

42,

R113)

[42]

Robot 156:

(Req,

0,

R156)

[1][2] [3] [4] [5] [6] [10]

(Req,

0,

R156)

[11][12]

(Req,

0,

R156)

[13]

(Req,

0,

R156)

[14]

(Req,

0,

R156)

[15]

(Lock,

16,

R156)

[16][17] [18] [21] [22]

(b)

Figure 7.10: The transmitted messages for mutual exclusion algorithm logged from the real experiment shown in Figure 7.9.
↓ specifies a sent message in (Type, Ti, i) format. ↑ is a receive event. × is receiving noise or a corrupted message. The
numbers in brackets are logical clocks. Thin lines are when the robot is requesting the lock and thick is when it holds the
lock. Dashes lines are when the robot is silent. (a) Only one robot is requesting the lock. (b) Three robots negotiate to
get the lock.



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 82

Robot Id Request tuple Time granted

Robot #62 (0, R62) 64.2s
Robot #156 (0, R156) 136.6s
Robot #113 (8, R113) 204.5s

Table 7.2: The request pair and the time lock is granted for the three robots of the real-world
trial depicted in Figure 7.10(b).

depicted in Figure 7.5(a), except that although the robot entered the “Wanted” state at

t = 3.3, it received a noise at t = 18.6. This noise caused the robot to defer grabbing the

lock until forty seconds later at t = 58.7.

In the multi-robot experiment shown in Figure 7.10(b), three robots are negotiating for

access to the charger. Compared to the similar trial in simulation (Figure 7.5(b)), during

the real-world run some of the messages do not get transferred correctly and are marked as

noise. Also, the delay between sending a message and receiving it on other robots is now

noticeable. But still the robots can achieve mutual exclusion. Both Robot #62 and Robot

#156 enter the “Wanted” state nearly at the same time when their logical clock is at 0.

Robot #113 enters the “Wanted” state later, when its logical clock is at 8. Eventually the

robots all get the lock in the same order as their requests.

For comparison, the request time-robot id pair and the time lock was granted are shown

for each robot in Table 7.2.

Future Enhancements

The main problem with the current system implementation is that it is prone to communi-

cation errors. There is a high penalty associated with the noise and corrupted messages. A

very noisy environment can completely prevent robots from obtaining the lock. This is very

dangerous in the charging application. As a solution, in the case of an emergency need for

power, the robots can switch back to physical fighting for accessing the charger.

The noise comes from different sources. Ambient noise and humans talking nearby can

block the audio communication. When the robots are in motion, they are noisy them-

selves. When going to a new environment, we try to tune the frequencies and the micro-

phone/speaker configurations to receive less noise. The data transfer bit-rate is another

factor that can be adjusted. Spread spectrum techniques can also be used to avoid jamming



CHAPTER 7. LOCAL MUTUAL EXCLUSION DEMONSTRATION 83

by noise.

The message corruption is mainly due to the lack of an error correction method in our

system. A better implementation of the communication module can use error recovery

techniques and better encoding. This might help to decode more messages successfully

rather than marking slightly corrupted packets as noise. Different methods as simple as

Manchester coding [43] and Hamming error correction codes to more complex ones like

Viterbi demodulation algorithm [55] or Reed-Solomon error correction [40] are some of the

possible options.



Chapter 8

Conclusions and Future Work

8.1 Summary

In this thesis we showed how audio can be exploited for our benefit in multi-robot systems.

We studied some of the characteristics of sound such as its locality, intensity gradient and

directionality. We developed a model that can simulate a simple version of these proper-

ties. To provide physical audio communication between robots, a CSMA audio message

transmission module is also developed. Studying two distinct generic applications for audio

communication proved this type of messaging to be of great use.

The Sounds Good experiment showed how by adding audio information to the decision

making process the performance increased significantly. This performance gain was still

achievable for a robot team equipped with simple bi-directional microphones. The audio-

based method to achieve local mutual exclusion brought ideas from distributed systems and

added the spatial locality of sound messages to them. It could also handle the unreliability

of the medium to a certain extent. A charging application demonstrated the local mutual

exclusion’s use toward building self-maintaining mobile robots.

Other than the results of the research, during this work we released all of the code and

tools. These tools are open-source, reusable and modular code that we hope, will be used

in different applications and possibly in other research areas.

Our contributions during this research include the following items:

• Implementing a simple and practical audio signal model for simulation of audio-based

communication in multi-robot systems. This model is integrated into the Stage robotic

84



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 85

simulator.

• Using the simulations done in the Sounds Good experiment to suggest that audio

communication among robot teams increase the team performance even while using

simple directional audio sensors.

• Developing the Nava network module which implements a Carrier Sense-Multiple Ac-

cess protocol with Collision Avoidance (CSMA-CA) for audio communication among

robots in real-world. Nava is a plug-in to the Player robotic server.

• Proposing a distributed algorithm for achieving mutual exclusion locally using audio

signaling. We demonstrated the use of this method in a sample charging application.

8.2 Future Work

This work is just a starting point in the research about audio communication in multi-robot

systems. There are lots of implementation details and design aspects. Not all the parameters

in the system were tuned to achieve the best results. In the pervious chapters, we described

some of the changes that can be made to enhance the system in its respective context. All

those along with the following new ideas can be considered in future research.

8.2.1 Hybrid Communication

In this thesis, we focused on audio communication being the only transmission medium. It

is possible to use a combination of different communication methods to take advantage of

other types of media as well. In a sensor network application, Girod in [15] used wireless

communication for time synchronization and audio for relative localization of sensor nodes.

Wireless networks can provide high data rates and reliability and audio links can provide

locality and gradient. The difference of transmission speed of sound versus light or radio-

waves can be used to determine the distance from the transmitter.

8.2.2 Bio-inspired Communication

The implementation of the Nava audio communication layer uses the traditional modulation

methods of digital data communication. It is feasible to use other types of natural sounds

such as human voice or animal songs to transfer data. Lopes in [30] studied different types



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 86

of modulation for data transmission using audio. His work is a survey of different methods

including ASK, FSK, synthesized music instruments, and animal sounds.

Studying animal behaviors to understand the way audio is used among them can be quite

beneficial in both understanding the animals and also to discovery of new ideas for use in

technology. Wiley in [57] suggested that the animals’ vocalizations are evolved to match the

physical constraints of acoustic communication in the atmosphere. These adaptations are

to reduce the effects of frequency-dependent attenuation, refraction, amplitude fluctuations

and reverberation. The same concept can be used in robot audio communication to make

the real-world transmission of sound more similar to our audio model. The simple audio

model we developed could only simulate the direct-sound propagation.

8.2.3 Modern Network Protocols on Audio

In computer networks and packet switching networks, data packets are routed between

nodes. A node can relay another node’s packet on the way to the destination. In some

network protocols a reliable connection is accomplished using error control methods. For

example the Automatic Repeat-Request (ARQ) makes use of acknowledgements and timeouts

to achieve reliable transmission. Congestion-control and flow-control are other examples of

modern control methods for data transmission. The same concepts can be developed in an

audio based multi-robot network.

Another possible application is for the robots to transfer data from one robot to another

by storing them and then physically transporting to another location. Pentland in [37]

demonstrates the same idea that is used to provide internet connectively to rural areas

using buses physically transporting the data.

8.2.4 Sound Signature

Unwanted noise caused by air-conditioners and various machines in an environment includ-

ing the robot itself, also the animal and human sounds, can disrupt audio communication

between robots. But on the other hand, these sounds can be analyzed to characterize and

possibly recognize places [7]. For example the sound signature of a forest is totally different

from the sound signature of a class room or a kitchen. The location of the stationary noise

sources is also another property of the environment that is sensible by mobile robots [31].

Reverberation of sound in a closed space can also be an identifier of that place. The



CHAPTER 8. CONCLUSIONS AND FUTURE WORK 87

Room Impulse Response is a histogram showing the power of all the echoes of an impulse

sound signal. It is a distinct mark for identifying the location. A robot can emulate an

impulse by generating a loud click. Recording the echoes heard afterward estimate the

Room Impulse Response.

The location information could be valuable data for robots and other technology products

such as location aware sensors. The robots can use all the information and fuse them with

the previous knowledge for novel applications.

8.3 Final Word

We demonstrated possibly the first real-world multi-robot system that uses audio commu-

nication. We studied audio communication in detail and presented two generic applications

that use acoustic transmissions. There is still more remaining to be done in future.



Bibliography

[1] J. Arias. RTTY: an FSK decoder program for Linux, Version 2.1, February 2003.
[Online]. Available: http://www.ele.uva.es/~jesus/rtty/.

[2] P. Batavia and I. Nourbakhsh. Path planning for the cye personal robot. In Pro-
ceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS’00), volume 1, pages 15–20, Takamatsu, Japan, October 2000.

[3] M. Bertram, E. Deines, J. Mohring, J. Jegorovs, and H. Hagen. Phonon tracing for
auralization and visualization of sound. In Proceedings of 16th IEEE Visualization
Conference (VIS 2005), pages 151–158, Minneapolis, MN, USA, October 2005. IEEE
Computer Society.

[4] C. Breazeal and L. Aryananda. Recognition of affective communicative intent in robot-
directed speech. Autonomous Robots, 12(1):83–104, 2002.

[5] J. C. Breidenthal, C. D. Edwards, E. Greenberg, G. J. Kazz, and G. K. Noreen. End-to-
end information system concept for the mars telecommunications orbiter. In Aerospace
Conference, 2006 IEEE, March 2006.

[6] C. Carollo. Sound propagation in 3d environments. In Game Developers Con-
ference (GDC’02), San Jose, CA, USA, March 2002. [Online]. Available: http:

//www.gamasutra.com/features/gdcarchive/2002/.

[7] S. Chu, S. Narayanan, C. C. J. Kuo, and M. J. Matarić. Where am i? scene recogni-
tion for mobile robots using audio features. In Proceedings of the IEEE International
Conference on Multimedia and Expo, pages 885–888, Toronto, Ontario, Canada, July
2006.

[8] P. R. Cook. Real Sound Synthesis for Interactive Applications. A. K. Peters, Ltd.,
2002.

[9] G. Coulouris, J. Dollimore, and T. Kindberg. Distributed systems (4th ed.): concepts
and design. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2005.

[10] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, Berlin ; New York, 1997.

88



BIBLIOGRAPHY 89

[11] E. W. Dijkstra. A note on two problems in connexion with graphs. In Numerische Math-
ematik, volume 1, pages 269–271. Mathematisch Centrum, Amsterdam, The Nether-
lands, 1959.

[12] R. W. Floyd. Algorithm 97: Shortest path. Communications of the ACM, 5(6):345,
1962.

[13] T. Funkhouser, N. Tsingos, and J. M. Jot. Sounds good to me: Computational sound
for graphics, virtual reality, and interactive systems. SIGGRAPH 2002 Course Notes
#45, July 2002.

[14] B. Gerkey, R. T. Vaughan, and A. Howard. The Player/Stage project: Tools for multi-
robot and distributed sensor systems. In Proceedings of the International Conference
on Advanced Robotics (ICAR’03), pages 317–323, Coimbra, Portugal, June 2003.

[15] L. Girod. A self-calibrating system of distributed acoustic arrays. PhD thesis, University
of California at Los Angeles, Los Angeles, CA, USA, 2005. Adviser-Deborah L. Estrin.

[16] S. Haim. Dictionary English-Persian, Persian-English. Languages of the World Pub-
lications, 2000.

[17] E. Hecht. Optics (4th Edition). Addison Wesley, August 2001.

[18] O.E. Holland, C. Melhuish, and S. Hoddell. Chorusing and controlled clustering for
minimal mobile agents. In Proceedings of the Fourth European Conference on Artificial
Life, pages 539–548, Cambridge, MA, USA, 1997. MIT Press.

[19] J. Huang, T. Supaongprapa, I. Terakura, N. Ohnishi, and N. Sugie. Mobile robot and
sound localization. In Proceedings of IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS’97), volume 2, pages 683–689, Grenoble, France, September
1997.

[20] iRobot Corporation. iRobotR© Create: Owners guide, 2006. [Online]. Available: http:

//www.irobot.com/sp.cfm?pageid=294.

[21] N. Jakobi. Evolutionary robotics and the radical envelope-of-noise hypothesis. Adaptive
Behavior, 6(2):325–368, 1997.

[22] V. M. Janik. Whistle matching in wild bottlenose dolphins (tursiops truncatus). Sci-
ence, 289(5483):1355–1357, 2000.

[23] H. W. Jensen. Global illumination using photon maps. In Proceedings of the Eurograph-
ics workshop on rendering techniques, pages 21–30, London, UK, 1996. Springer-Verlag.

[24] B. Kapralos, M. Jenkin, and E. Milios. Sonel mapping: acoustic modeling utilizing
an acoustic version of photon mapping. In Proceedings of the 3rd IEEE International
Workshop on Haptic, Audio and Visual Environments and Their Applications (HAVE
2004), pages 1–6, Ottawa, Ontario, Canada, October 2004.



BIBLIOGRAPHY 90

[25] B. Kapralos, M. Jenkin, and E. Milios. Acoustical diffraction modeling utilizing the
huygens-fresnel principle. In Proceedings of the IEEE International Workshop on Hap-
tic, Audio and Visual Environments and their Applications (HAVE 2005), pages 39–44,
Ottawa, Ontario, Canada, October 2005.

[26] P. Karimian, R. T. Vaughan, and S. Brown. Sounds good: Simulation and evaluation
of audio communication for multi-robot exploration. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS’06), pages 2711–
2716, Beijing, China, October 2006.

[27] M. Konishi. Sound localization in owls. In E. G. Adelman and B. H. Smith, editors,
Encyclopedia of Neuroscience, pages 1906–1908. Elsevier, 1999.

[28] L. Lamport. A new solution of dijkstra’s concurrent programming problem. Commu-
nications of the ACM, 17(8):453–455, 1974.

[29] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, 1978.

[30] C. V. Lopes and P. M. Q. Aguiar. Acoustic modems for ubiquitous computing. IEEE
Pervasive Computing, 2(3):62–71, July 2003.

[31] E. Martinson and A. Schultz. Robotic discovery of the auditory scene. IEEE Interna-
tional Conference on Robotics and Automation (ICRA’07), pages 435–440, April 2007.

[32] P. Mcdowell, B. Bourgeois, P. J. Mcdowell, S. S. Iyengar, and J. Chen. Relative posi-
tioning for team robot navigation. Autonomous Robots, 22(2):133–148, 2007.

[33] P. K. McGregor. Signalling in territorial systems: A context for individual identifica-
tion, ranging and eavesdropping. Philosophical Transactions: Biological Sciences, The
Evolution and Design of Animal Signalling Systems, 340(1292):237–244, May 1993.

[34] C. Melhuish, O. Holland, and S. Hoddell. Convoying: using chorusing to form travelling
groups of minimal agents. Robotics and Autonomous Systems, 28:207–216(10), August
1999.

[35] S. Moorehead, R. Simmons, and W. L. Whittaker. Autonomous exploration using
multiple sources of information. In Proceedings of the IEEE International Conference
on Robotics and Automation (ICRA’01), volume 3, pages 3098–3103, Seoul, Korea,
May 2001.

[36] E. Østergaard, M. J. Matarić, and G. S. Sukhatme. Distributed multi-robot task alloca-
tion for emergency handling. In Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS’01), volume 2, pages 821–826, Maui, HI, USA,
2001.



BIBLIOGRAPHY 91

[37] A. Pentland, R. Fletcher, and A. Hasson. Daknet: rethinking connectivity in developing
nations. Computer, 37(1):78–83, January 2004.

[38] G. Ricart and A. K. Agrawala. An optimal algorithm for mutual exclusion in computer
networks. Communications of the ACM, 24(1):9–17, 1981.

[39] A. Rowe, C. Rosenberg, and I. Nourbakhsh. A low cost embedded color vision system.
In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and
System (IROS’02), volume 1, pages 208–213, Lausanne, Switzerland, September 2002.

[40] D. Salomon. Coding for Data and Computer Communications. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2005.

[41] H.-U. Schnitzler, C.F. Moss, and A. Denzinger. From spatial orientation to food acqui-
sition in echolocating bats. Trends in Ecology and Evolution, 18:386–394(9), August
2003.

[42] A. Silberschatz, P. B. Galvin, and G. Gagne. Operating System Concepts. John Wiley
& Sons, Inc., New York, NY, USA, 2001.

[43] W. Stallings. Data and Computer Communications. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2006.

[44] M. Stojanovic. Recent advances in high-speed underwater acoustic communications.
IEEE Journal of Oceanic Engineering, 21(2):125–136, April 1996.

[45] P. Stone and M. Veloso. Task decomposition, dynamic role assignment, and low-
bandwidth communication for real-time strategic teamwork. Artificial Intelligence,
110(2):241–273, 1999.

[46] A. Tanenbaum. Computer Networks. Prentice Hall Professional Technical Reference,
Upper Saddle River, NJ, USA, 2002.

[47] S. Thrun, M. Bennewitz, W. Burgard, A. B. Cremers, F. Dellaert, D. Fox, D. Hahnel,
C. Rosenberg, N. Roy, J. Schulte, and D. Schulz. MINERVA: a second-generation
museum tour-guide robot. In Proceedings of IEEE International Conference on Robotics
and Automation, (ICRA’99), volume 3, pages 1999–2005, Detroit, MI, USA, 1999.

[48] B. Tribelhorn and Z. Dodds. Evaluating the roomba: A low-cost, ubiquitous platform
for robotics research and education. IEEE International Conference on Robotics and
Automation ICRA’2007), pages 1393–1399, April 2007.

[49] N. Tsingos, T. Funkhouser, A. Ngan, and I. Carlbom. Modeling acoustics in virtual
environments using the uniform theory of diffraction. In SIGGRAPH ’01: Proceedings
of the 28th annual conference on Computer graphics and interactive techniques, pages
545–552, Los Angeles, CA, USA, 2001. ACM Press.



BIBLIOGRAPHY 92

[50] A. M. Turing. Computing machinery and intelligence. Mind, 59(236):433–460, October
1950.

[51] J. Valin, F. Michaud, J. Rouat, and D. Létourneau. Robust sound source localization
using a microphone array on a mobile robot. In Proceedings of the IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS’03), volume 2, pages
1228–1233, Las Vegas, Nevada, USA, October 2003.

[52] R. T. Vaughan and B. Gerkey. On device abstractions for portable, reusable robot
code. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robot
Systems (IROS’03), volume 3, pages 2421–2427, Las Vegas, Nevada, USA, October
2003.

[53] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić. Blazing a trail: Insect-
inspired resource transportation by a robot team. In Proceedings of the International
Symposium on Distributed Autonomous Robotic Systems (DARS’02), pages 111–120,
Knoxville, Tennessee, USA, October 2000.

[54] R. T. Vaughan, K. Støy, G. S. Sukhatme, and M. J. Matarić. Go ahead, make my
day: Robot conflict resolution by aggressive competition. In Proceedings of the 6th
International Conference on Simulation of Adaptive Behaviour (SAB), pages 491–500,
Paris, France, August 2000.

[55] A. J. Viterbi and J. K. Omura. Principles of Digital Communication and Coding.
McGraw-Hill, Inc., New York, NY, USA, 1979.

[56] J. Wang, S. Premvuti, and A. Tabbara. A wireless media access protocol (CSMA/CD-
W) for mobile robot based distributed robotic systems. In Proceedings of the IEEE
International Conference on Robotics and Automation, (ICRA 1995), volume 3, pages
2561–2566, Nagoya, Japan, May 1995.

[57] R. H. Wiley and D. G. Richards. Physical constraints on acoustic communication in the
atmosphere: Implications for the evolution of animal vocalizations. Behavioral Ecology
and Sociobiology, 3(1):69–94, 1978.

[58] B. Yamauchi. A frontier-based approach for autonomous exploration. In Proceedings
of the IEEE International Symposium on Computational Intelligence in Robotics and
Automation (CIRA’97), pages 146–151, Monterey, CA, USA, July 1997.

[59] B. Yamauchi. Frontier-based exploration using multiple robots. In Proceedings of
the Second International Conference on Autonomous Agents (Agents’98), pages 47–53,
Minneapolis, Minnesota, United States, 1998. ACM Press.

[60] P. Zebrowski and R. T. Vaughan. Recharging robot teams: A tanker approach. In
Proceedings of the International Conference on Advanced Robotics (ICAR’05), pages
803–810, Seattle, Washington, July 2005.


